Python Programming

Alex Pacheco

LTS Research Computing

What is Python?

e A general-purpose programming language (1980) by Guido van Rossum

e Intuitive and minimal coding

e Dynamically typed

e Automatic memory management

e Interpreted not compiled

e Free (developed under an OSI-approved open-source license) and portable

What can Python do?

e web development (server-side),

e system scripting,

e connecting to database systems and to read and modify files,

e handle big data and perform complex mathematics,

e rapid prototyping, or for production-ready software development.

Why Python?

e works on different platforms (Windows, Mac, Linux, Raspberry Pj, etc).

e has a simple syntax similar to the English language.

e has syntax that allows developers to write programs with fewer lines than some
other programming languages.

e runs on an interpreter system, meaning that code can be executed as soon as it is
written. This means that prototyping can be very quick.

e can be treated in a procedural way, an object-orientated way or a functional
way.

e The most recent major version of Python is Python 3

= However, Python 2, although not being updated with anything other
than security updates, is still quite popular.

Python Syntax compared to other programming
languages

e Python was designed for readability, and has some similarities to the English
language with influence from mathematics.

e Python uses new lines to complete a command, as opposed to other
programming languages which often use semicolons or parentheses.

e Python relies on indentation, using whitespace, to define scope; such as the
scope of loops, functions and classes.

e Other programming languages often use curly-brackets for this purpose.

Installing Python

e Many PCs and Macs will have python already installed.
e To check if you have python installed:

= Open Command Line (cmd.exe) on Windows

= Open Terminal on Linux or Mac
e and run the following command

" python --version

Installing from Source

e Python is a free and open source software that can downloaded and installed
from https://www.python.org/downloads/
(https://www.python.org/downloads/)

e Latest stable release for Python 3 is 3.7.0

e A large majority of users still use the older version Python 2.

e Python 2 is scheduled for end-of-life on Jan 1, 2020 and migrating to Python 3 is
strongly recommended.

https://www.python.org/downloads/

Anaconda Python Distribution

Anaconda Python distribution (https://www.anaconda.com/distribution/) is the
most popular platform for Python

It provides

= a convenient install procedure for over 1400 Data Science libraries for
Python and R

= conda to manage your packages, dependencies, and environments

= anaconda navigator: a desktop portal to install and launch applications
and editors including Jupyter, RStudio, Visual Studio Code, and
Spyder

Visit https://go.lehigh.edu/linux (https://go.lehigh.edu/linux) to use Anaconda
(and other Linux software) installed and maintained by the Research
Computing group on your local Linux laptop or workstation

https://www.anaconda.com/distribution/
https://go.lehigh.edu/linux

Using Python

e launch python by typing python on the *nix command line or cmd.exe in
windows

®@o0e " apacheco — python — 80x24

Last login: Wed Jun 27 08:30:50 on ttys@@7

[2018-06-27 ©9:18.23] ~

[[apacheco@dynl02040](501): python]
Python 3.6.5 |Anaconda custom (64-bit)| (default, Apr 26 2018, 08:42:37)

[GCC 4.2.1 Compatible Clang 4.06.1 (tags/RELEASE_401/final)] on darwin
Typel“help", "copyright", "credits" or "license" for more information.

>>>

e If you have installed Anaconda Python, then you can launch IPython, an
enhanced python shell, from the command line

® 0 > apacheco — IPython: Users/apacheco — ipython — 80x24

[2018-06-27 09:20.20] ~

[[apacheco@dynl02040](503): ipython

Python 3.6.5 |Anaconda custom (64-bit)| (default, Apr 26 2018, 08:42:37)
Type 'copyright', 'credits' or 'license' for more information

IPython 6.3.1 -- An enhanced Interactive Python. Type '?' for help.

In [11: |}

e Open Anaconda Navigator to launch

= Jupyter QtConsole
= Spyder, an open source IDE for python

,) ANACONDA NAVIGATOR

A Home

@ Environments

. Jjupyterlab

N Learning

0321

An extensible environment for inceractive

and reproducible computing, based on the
Jupter Notebook and Architecture.

rstudio

Documentation 1423

A set of integrated tools designed to help
you be more productive with R. Includes R

Developer Blog
essentials 2nd notebooks.

Feedback

Yy & ?

© Anaconda Navigator

© Upgrade Now

Applications on base (root) Channels

N L
notebook qtconsole
PR

2

Web-based, interactive computing notebook

environment. Edit and run human-readable
docs while describing the data analysis.

PYQE GUI that supports inline figures, proper
mulciline editing with syntax highlighting,
graphical calltips, and more.

glueviz

spyder

328 0133
Multidimensional data visualization across
files. Explore relationships within and among
elated datasets.

Scientific PYthon Development
EnviRonment. Powerful Python IDE with
advanced editing, interactive testing,
debugging and introspection features

Jupyter (formely IPython) notebooks
Jupyter Lab (formerly Jupyter Hub)

Sign in to Anaconda Cloud

Refresh

Which one to use?

* You should choose one that suits your need

= Python Shell, IPython or QtConsole: for interactive use when you do
not want to save your work

= Spyder or other IDE's such as PyCharm: for writing scripts that you
want to save for later reuse

= Jupyter Lab or Notebooks: for writing scripts and workflows that you
can share with others, ideal for reproducible research or data reporting

o This presentation is written in Jupyter Notebook
o Provides magic commands like ! and %% to provide
access to *nix commands.

= Use an editor such as vi/vim, emacs, Notepad++ etc to write a python

script and execute as a batch script.

Printing to screen

e Python has a built-in function, print to write output to standard output or screen

In [1]: print("Hello World!")

Hello World!

Reading from screen

e Python has a built-in function, input to read input from standard input or screen

In [2]: input('What is your name? ')
What is your name? Alex

out[2]: Alex’

Your First Python Script

e Create a file, myscript.py, with the following content
print ("Hello There!")
e On the command line, type python myscript.py and hit enter

In [3]: !python myscript.py

Hello There!

e If you are using Jupyter Notebooks, then bang (!) is used to invoke shell
commands

Your First Python Script

e On Linux and Mac, add #!//usr/bin/env python as the first line
e Convert myscript.py to an executable and execute it

In [4]: !cat myscript.py
#!/usr/bin/env python

print("Hello There!")

In [5]: ¢%bash
chmod +x myscript.py
./myscript.py

Hello There!

e If you are using Jupyter Notebooks, then $%bash is used to enter a series of
bash command
= Jf you only need to run one command, then use ! followed by the
command

Variables and Types

e A variable is a name that refers to a value.
e An assignment statement creates new variables and gives them values:

In [6]: message = 'And now for something completely different'
n =17
pi = 3.1415926535897931

The first assigns a string to a new variable named message
the second gives the integer 17 ton

the third assigns the (approximate) value of 7 to pi

To display the value of a variable, you can use a print function

In [7]: print(message)

And now for something completely different

In [8]:

Out[8]:

In [9]:

Oout[9]:

In [10]:

Oout[10]:

e The type of a variable is the type of the value it refers to.

type(message)

str

type(n)

int

type(pi)

float

Variable names

e Variable names can be arbitrarily long. They can contain both letters and
numbers, but they have to begin with a letter.
e The underscore character (_) can appear in a name.
= Jtis often used in names with multiple words, such as my_name
e If you give a variable an illegal name, you get a syntax error:

In [11]: 76trombones = 'big parade'

File "<ipython-input-11-ee59al72c534>", line 1
76trombones = 'big parade'’

A

SyntaxError: invalid syntax

In [12]: class = 'Advanced Theoretical Zymurgy'

File "<ipython-input-12-73fc4celal5a>", line 1
class = 'Advanced Theoretical Zymurgy'

A

SyntaxError: invalid syntax

Reserved Words

e Python has 31 keywords or reserved words that cannot be used for variable
names.

and del for is raise
as elif from lambda | return
assert else global | not try
break except | if or while
class exec import | pass with
continue | finally | in print yield
def

e Use an editor that has syntax highlighting, wherein python functions have a
different color
= See previous slides, variable names are in the normal color i.e. black
while reserved keywords, for e.g. class, are in green

Statements

e A statement is a unit of code that the Python interpreter can execute. We have
seen two kinds of statements: print and assignment.

e When you type a statement in interactive mode, the interpreter executes it and
displays the result, if there is one.

e A script usually contains a sequence of statements. If there is more than one
statement, the results appear one at a time as the statements execute.

In [13]: print(1l)
X = 2
print(x)

1
2

Data Types

Python has 5 Data types

1. Numbers
A. Integers
B. Floating Point Numbers
C. Complex Numbers

2. Strings

3. Lists

4. Dictionaries

5. Tuples

6. Boolean

In [14]:

In [15]:

Integers

e There is effectively no limit to how long an integer value can be
* You are constrained by the amount of memory your system

print(123123123123123123123123123123123123123123123123 + 1)

123123123123123123123123123123123123123123123124

e Python interprets a sequence of decimal digits without any prefix to be a
decimal number:

print(10)
print (0010)
print(0b10)

10
8
2

e Add a prefix to an integer value to indicate a base other than 10:

Prefix | Interpretation | Base
Ob Binary 2
0o Octal 8
0x Hexadecimal 16

e The underlying type of a Python integer, irrespective of the base used to specify
it, is called int

In [16]: type(10)
out[l6]: int

In [17]: +type(0010)
out[l7]: int

In [18]: +type(0x10)

out[l8]: int

In [19]:

Out[19]:

In [20]:

out[20]:

In [21]:

Out[21]:

In [22]:

Out[22]:

Floating Point Number

e The float type in Python designates a floating-point number.

e float values are specified with a decimal point.

e Optionally, the character e or E followed by a positive or negative integer may
be appended to specify scientific notation

type(0.2)

float

type(.4e7)

float

4.2e-4

0.00042

In [23]:

Out[23]:

In [24]:

Out[24]:

Floating-Point Representation

e For 64-bit systems, the maximum value a floating-point number can have is
approximately 1.8 x 10°%
e Python will indicate a number greater than that by the string inf

1.79e308

1.79e+308

1.8e+308

inf

In [25]:

Out[25]:

In [26]:

Out[26]:

e The closest a nonzero number can be to zero is approximately 5.0 x 10732
e Anything closer to zero than that is effectively zero

5e-324

5e-324

2e-324

0.

0

In [27]:

out[27]:

In [28]:

out[28]:

In [29]:

Oout[29]:

e Floating point numbers are represented internally as binary (base-2) fractions

e Most decimal fractions cannot be represented exactly as binary fractions, so in
most cases the internal representation of a floating-point number is an
approximation of the actual value

e In practice, the difference between the actual value and the represented value is
very small and should not usually cause significant problems

0.5 -0.4 - 0.1

-2.7755575615628914e-17

e You can convert between an int and float types using built-in functions

int(4.2)

4

float(15)

15.0

In [30]:

Out[30]:

In [31]:

In [32]:

Out[32]:

In [33]:

out[33]:

Complex Numbers

e Complex numbers are specified as (real part)+(imaginary part)j. For example:
a =2+ 3j
type(a)
complex

print(a.real, a.imag)

2.0 3.0

a*a

(-5+127)

a*a.conjugate()

(13+073)

In [34]:

In [35]:

Oout[35]:

In [36]:

In [37]:

out[37]:

Strings

e Strings are sequences of character data. The string type in Python is called str.
e String literals may be delimited using either single or double quotes.
= All the characters between the opening delimiter and matching closing
delimiter are part of the string:

print("I am a string.")

I am a string.

type("I am a string.")

str

print('I am too."')

I am too.

type('I am too.')

str

e A string in Python can contain as many characters as you wish.
= The only limit is your machine’s memory resources.

e A string can also be empty:

In [38]: "'
out[38]:

e If you want to include either type of quote character within the string, the

simplest way is to delimit the string with the other type.
= If a string is to contain a single quote, delimit it with double quotes and

vice versa

string contains a single quote (') character.")

In [39]: print("This
string contains a double quote (") character.')

print('This

contains a single quote (') character.

This string
contains a double quote (") character.

This string

In [40]:

e Alternatively, escape the quote character using a backslah

print('This string contains a single quote (\') character.')
print("This string contains a double quote (\") character.")

This string contains a single quote (') character.
This string contains a double quote (") character.

e Escape sequences

Escape Sequence | Escaped Interpretation

\' Literal single quote (') character

\" Literal double quote (") character
\newline Newline is ignored

\\ Literal backslash () character

\n ASCII Linefeed (LF) character

\r ASCII Carriage Return (CR) character
\t ASCII Horizontal Tab (TAB) character
\v ASCII Vertical Tab (VT) character

Interactive Python - User Input

e To interact with standard input, the input function can be assigned to a string

variable
e Modify your myscript.py file to ask for your name or anyone's name interactively

To run example within Jupyter Notebook or IPython or Python Shell
name = input ("What is your name? ")
print("Hello " ,name)

In [41]:
What is your name? Alex Pacheco

Hello Alex Pacheco

e You need to use built-in functions, int or float to read integer or floating numbers

from standard input

In [42]:

In [43]:

Triple Quoted Strings

e Triple-quoted strings are delimited by matching groups of three single quotes or
three double quotes.

e Escape sequences still work in triple-quoted strings, but single quotes, double
quotes, and newlines can be included without escaping them.

e This provides a convenient way to create a string with both single and double
quotes in it

print('''This string has a single (') and a double (") quote.''"')

This string has a single (') and a double (") quote.

e Because newlines can be included without escaping them, this also allows for
multiline strings:

print("""This is a
string that spans
across several lines""")

This is a
string that spans
across several lines

In [44]:

Out[44]:

In [45]:

Out[45]:

Boolean

e Objects of Boolean type may have one of two values, True or False:

type(True)

bool

type (False)

bool

Operators and Operands

e QOperators are special symbols that represent computations like addition and
multiplication.
e The values the operator is applied to are called operands.

Arithmetic Operators

Operator | Meaning Example
+ (unary) | Unary Positive +a

+ (binary) | Addition atb

- (unary) | Unary Negation -a

- (binary) | Subtraction a-b

* Multiplication a*b

/ Division a/b

% Modulus a%Db

// Floor Division (also called Integer Divison | a//b

o Exponentiation a*™b

In [47]:

In [48]:

In [49]:

a =14
b =3

print(+a)
print(-b)

4
-3

print(a
print(a

7
1

print(a
print(a
print (3
print (2
print(a

12

+ b)

* Ok ok N F
V)
~
~
op
N

1.3333333333333333

4
2
64

String Operations

e Python strings are immutable i.e. once a string is created it can’t be modified

In [50]: strl="Hello"
str2="Hello"
print(id(strl),id(str2))

4529017720 4529017720

e strl and str2 both refer to the same memory location
e If you modity strl, it creates a new object at a different memory location

In [51]: strl+=", Welcome to LTS Seminars"
print(strl,id(strl),id(str2))

Hello, Welcome to LTS Seminars 4528885888 4529017720

e Every element of a string can be referenced by their index (first index is 0)

In [52]: strl[0]

out[52]: H'
e + operator is used to concatenate string and * operator is a repetition operator
for string.
In [53]: s = "So, you want to learn Python? " * 4
print(s)

So, you want to learn Python? So, you want to learn Python? So, you want to lea

rn Python? So, you want to learn Python?

e You can take subset of string from original string by using [] operator, also
known as slicing operator.

e s[start:end] will return part of the string starting from index start to
indexend - 1

In [54]: s[3:15]

out[54]: you want to'

e start index and end index are optional.
e default value of start index is 0
e default value of end is the last index of the string

In [55]: s[:3]

out[55]: SO

In [56]: s[15:]

out[56]: learn Python? So, you want to learn Python? So, you want to learn Python? So,
you want to learn Python? '

In [57]: s[:]

Out[57]: 'So, you want to learn Python? So, you want to learn Python? So, you want to le
arn Python? So, you want to learn Python? '

String functions

e ord(): returns the ASCII code of the character.

e chr(): function returns character represented by a ASCII number.
e [en(): returns length of the string

e max(): returns character having highest ASCII value

e min(): returns character having lowest ASCII value

In [58]: 1len(s)

out[58]: 120

Comparison Operators

e Can be used for both numbers and strings
e Python compares string lexicographically i.e using ASCII value of the characters

Operator | Meaning Example
== Equal to a==

I= Not equal to al=b

< Less than a<b

<= Less than or equal to a<=b

> Greater than a>b

>= Greater than or equal to | a>=b

In [59]: a = 10
b = 20
print(a == b)
False

In [60]: ¢ = 'Hi'
d = "hi'
print(c == d)

print(¢ < d)
print(ord('H'),ord('h'),ord('i"))

False
True
72 104 105

e Consider two strings 'Hi' and 'HI' for comparison.
e The first two characters (H and H) are compared.
e Since 'i' has a greater ASCII value (105) than 'T"' with ASCII value (73), 'Hi' is

greater than 'HI'

In [61]: 'HI' < 'Hi'

out[61]: True

In [62]:

Out[62]:

In [63]:

Out[63]:

In [64]:

out[64]:

Logical Operators

Operator | Example | Meaning

True if x is False
not not x False if x is True

(Logically reverses the sense of x)
or « or True if either x or y is True

y False otherwise

True if both x and y are True
and x and y ,

False otherwise

x =5
not x < 10

False

X < 10 or callable(x)

True

X < 10 and callable(len)

True

Functions

e A function is a named sequence of statements
= functions are specified by name and a sequence of statements.
= You "call" the function by name.

In [65]: print(x)

5

The name of the function is print.
The expression in parentheses is called the argument of the function.

The result, for this function, is the type of the argument.

It is common to say that a function "takes" an argument and "returns" a result.

The result is called the return value.

Built-in Type Conversion Functions

Function | Description

ascii() Returns a string containing a printable representation of an object
bin() Converts an integer to a binary string

bool() Converts an argument to a Boolean value

callable() | Returns whether the object is callable (i.e., some kind of function)
chr() Returns string representation of character given by integer argument
complex() | Returns a complex number constructed from arguments

float() Returns a floating-point object constructed from a number or string
hex() Converts an integer to a hexadecimal string

int() Returns an integer object constructed from a number or string

oct() Converts an integer to an octal string

ord() Returns integer representation of a character

repr() Returns a string containing a printable representation of an object
str() Returns a string version of an object

type()

Returns the type of an object or creates a new type object

Math

e Python has a math module that provides most of the familiar mathematical
functions

Function | Description

abs() Returns absolute value of a number

divmod() | Returns quotient and remainder of integer division

max() Returns the largest of the given arguments or items in an iterable
miny() Returns the smallest of the given arguments or items in an iterable
pow() Raises a number to a power

round() | Rounds a floating-point value

sum() Sums the items of an iterable

e A module is a file that contains a collection of related functions
e Before we can use the module, we have to import it

In [66]: import math

e This statement creates a module object named math
e If you print the module object, you get some information about it

In [67]: print(math)

<module 'math' from '/Users/apacheco/anaconda3/lib/python3.6/1lib-dynload/math.c
python-36m-darwin.so'>

e The module object contains the functions and variables defined in the module

e To access one of the functions, you have to specify the name of the module and
the name of the function, separated by a dot (also known as a period)

e This format is called dot notation

In [68]: degrees = 45
radians = degrees / 360.0 * 2 * math.pi
math.sin(radians)

out[68]: 0.7071067811865475

Iterables and Iterators

Function Description

all() Returns True if all elements of an iterable are true

any() Returns True if any elements of an iterable are true
enumerate() | Returns a list of tuples containing indices and values from an iterable
filter() Filters elements from an iterable

iter() Returns an iterator object

len() Returns the length of an object

map) Applies a function to every item of an iterable

next() Retrieves the next item from an iterator

range() Generates a range of integer values

reversed() Returns a reverse iterator

slice() Returns a slice object

sorted() Returns a sorted list from an iterable

zip() Creates an iterator that aggregates elements from iterables

User Defined Functions

e Python allows programmers to define their OWN function
e A function definition specifies the name of a new function and the sequence of
statements that execute when the function is called.

Why create your own functions?

e Creating a new function gives you an opportunity to name a group of
statements, which makes your program easier to read and debug.

e Functions can make a program smaller by eliminating repetitive code. Later, if
you make a change, you only have to make it in one place.

e Dividing a long program into functions allows you to debug the parts one at a
time and then assemble them into a working whole.

e Well-designed functions are often useful for many programs. Once you write
and debug one, you can reuse it.

In [69]: def celcius to fahrenheit(tempc):
tempf = 9.0 / 5.0 * tempc + 32.0
return tempf

In [70]: tempc = float(input('Enter Temperature in Celcius: '))
print("%6.2f C = %6.2f F" % (tempc, celcius_ to fahrenheit(tempc)))

Enter Temperature in Celcius: 35
35.00 C = 95.00 F

e When you create a variable inside a function, it is local, which means that it only
exists inside the function.
m e.g. tempf is local within the celcius_to_fahrenheit function and does not
exist outside the scope of the function

In [71]: print(tempf)

NameError Traceback (most recent call last)
<ipython-input-71-8f86ela6cd78> in <module>()
-——-> 1 print(tempf)

NameError: name 'tempf' is not defined

Conditional Execution

e Conditional Statements gives the programmer an ability to check conditions
and change the behavior of the program accordingly.
e The simplest form is the if statement:

is true is false

conditional Y
code

If cunditiuni If condition

Syntax:
if condition:
statements

e The boolean expression after the if statement is called the condition.

= If it is true, then the indented statement gets executed.
= If not, nothing happens.

e if statements have the same structure as function definitions:

= a header followed by an indented block.
= Statements like this are called compound statements.

e There is no limit on the number of statements that can appear in the body, but
there has to be at least one.

e QOccasionally, it is useful to have a body with no statements (usually as a place
keeper for code you haven't written yet).

e In that case, you can use the pass statement, which does nothing.

In [72]: if x < O:
pass

e There may be a situation where you want to execute a series of statements if the
condition is false
e Python providesanif ... else ... conditional
e Syntax
if condition:
statments 1
else:
statements 2

In [73]: if x % 2 == 0:
print('x is even')
else:
print('x is odd')

X 1is odd

e [f the remainder when x is divided by 2 is 0, then we know that x is even, and
the program displays a message to that effect.

e If the condition is false, the second set of statements is executed.

e Since the condition must be true or false, exactly one of the alternatives will be
executed. - The alternatives are called branches, because they are branches in
the flow of execution.

e Sometimes there are more than two possibilities and we need more than two
branches.
e Python providesaif ... elif ... else conditional
e Syntax
if conditionl:
statements 1
elif condition2:
statements 2
else
statements 3

In [74]: y = 10
if x < y:
print('x is less than y')
elif x > y:
print('x is greater than y')
else:
print('x and y are equal')

X is less than y

elif is an abbreviation of “else if.”

Again, exactly one branch will be executed.

There is no limit on the number of elif statements.

If there is an else clause, it has to be at the end, but there doesn’t have to be one.

In [75]: choice='d'
if choice == 'a':
print('choice is a')
elif choice == 'b':
print('choice is b')
elif choice == 'c':

print('choice is c¢')

Each condition is checked in order.

If the first is false, the next is checked, and so on.

If one of them is true, the corresponding branch executes, and the statement
ends.

Even if more than one condition is true, only the first true branch executes.

e Conditional can also be nested within another.

In [76]: if x == y:
print('x and y are equal')
else:
if x < y:
print('x is less than y')
else:
print('x is greater than y')

x is less than y

e The outer conditional contains two branches.

e The first branch contains a simple statement.

e The second branch contains another if statement, which has two branches of its
OWn.

e Those two branches are both simple statements, although they could have been
conditional statements as well.

e Logical operators often provide a way to simplify nested conditional statements.

In [77]: if 0 < x:
if x < 10:
print('x is a positive single-digit number.')
X 1s a positive single-digit number.
e The print statement is executed only if we make it past both conditionals
e we can get the same effect with the and operator

In [78]: if 0 < x and x < 10:
print('x is a positive single-digit number.')

X is a positive single-digit number.

Control Statements

Python provides three control statements that can be used within conditionals and loops

1. break: Terminates the loop statement and transfers execution to the statement
immediately following the loop

2. continue: Causes the loop to skip the remainder of its body and immediately
retest its condition prior to reiterating.

3. pass: The pass statement is used when a statement is required syntactically but
you do not want any command or code to execute.

In [79]:

In [80]:

out[80]:

In [81]:

In [82]:

out[82]:

Recursion

e Python functions can call itself recursively

def factorial(n):
if n < 1:
return 1
else:
return n*factorial(n-1)

factorial(5)

120

def double fact(n):
if n < 2:
return 1
else:
return n * double fact(n - 2)

double fact(10)

3840

Loops

e There may be a situation when you need to execute a block of code a number of
times.

e A loop statement allows us to execute a statement or group of statements
multiple times.

Conditional Code

If condition
is true

If condition
is false

for loops

e The for statement has the ability to iterate over the items of any sequence, such
as a list or a string

e [f a sequence contains an expression list, it is evaluated first.

e Then, the first item in the sequence is assigned to the iterating variable
iterating_var.

e Next, the statements block is executed.

e Each item in the list is assigned to iterating_var, and the statement(s) block is
executed until the entire sequence is exhausted.

for iterating var in sequence:
statements(s)

In [83]: for letter in 'Hola':

print('Current Letter :', letter)
Current Letter : H
Current Letter : o
Current Letter : 1
Current Letter : a

In [84]: fruits = ['banana', 'apple', ‘'mango']

for fruit in fruits:

print ('Current fruit :', fruit)
Current fruit banana

Current fruit : apple
Current fruit : mango

e An alternative way of iterating through each item is by index offset into the
sequence itself

In [85]: fruits = ['banana', 'apple', 'mango']
for index in range(len(fruits)):
print ('Current fruit :', fruits[index])

Current fruit : banana
Current fruit : apple
Current fruit : mango

range function

e The built-in function range() iterates over a sequence of numbers.
In [86]: range(5)
out[86]: range(0, 5)

In [87]: 1list(range(5))

out[s7zy: [0, 1, 2, 3, 4]

In [88]: for var in list(range(5)):
print(var)

= W NPk O

while loop

e A while loop statement repeatedly executes a target statement as long as a given
condition is true.

e Here, statement(s) may be a single statement or a block of statements with
uniform indent.

e The condition may be any expression, and true is any non-zero value. The loop
iterates while the condition is true.

e When the condition becomes false, program control passes to the line
immediately following the loop.

while expression:
statement(s)

In [89]: number = int(input('Enter any integer: '))

fact = count =1
while (count <= number):
fact = count * fact
count += 1
print('Factorial of %d is %d' % (number, fact))

Enter any integer: 12
Factorial of 12 is 479001600

infinite loop

e A loop becomes infinite loop if a condition never becomes FALSE

number = int(input('Enter any integer: '))
fact = count =1
while (count <= number):
fact = count * fact
print('Factorial of %d is %d' % (number, fact))

Using else Statement with Loops

e Python supports having an else statement associated with a loop statement.

e [f the else statement is used with a for loop, the else block is executed only if the
for loops terminates normally (and not by encountering break statement).

e [f the else statement is used with a while loop, then the else statement is executed
when the condition becomes false.

In [90]: numbers = [11,33,55,39,55,75,37,21,23,41,13]

for num in numbers:

if num%2 == 0:
print ('the list contains an even number')
break
else:

print ('the list does not contain even number')

the list does not contain even number

In [91]: count = 0
while count < 5:
print (count, is less than 5")
count = count + 1

else:
print (count, " is not less than 5")

is 1less than
is 1less than
is 1less than
is 1less than
is 1less than 5

is not less than 5

U Wbk Oo
(S0 G, B0, IN0,|

Lists

e Like a string, a list is a sequence of values.
e In a string, the values are characters; in a list, they can be any type.
e The values in list are called elements or sometimes items.

In [92]: a = [10, 20, 30, 40]
print(a)

[10, 20, 30, 40]
e [ists can be nested.
In [93]: b = ['spam', 2.0, 5, [10, 20]]
print(b)

['spam', 2.0, 5, [10, 20]]

e An empty listi.e. list with no elements is created with empty brackets [].

In [94]: c=[]
print(c)

[]
e Lists are mutable i.e. they can be modified after creation

In [95]: numbers = [17, 123]
print (numbers)

[17, 123]

In [96]: numbers[0] = 5
print (numbers)

[5, 123]

e A list can be traversed using a for loop

In [97]: for i in numbers:
print (i)

5
123

e The + operator concatenates lists:

In [98]: a = [1, 2,
b =14, 5, 6]
c=a+b

e You can reference a section of the list using a slice operator

In [99]: c[2:5]

out[99]: [3, 4, 3]

list operations

e append adds a new element to the end of the list

In [100]: 1 =1['a', 'b', 'c']
tl.append('d')
print(tl)

['all 'b'I IC" I(i"]
o cxtend takes a list as an argument and appends all of the elements

In [101]: t2 =['e', '"f']
tl.extend(t2)
print(tl)

[lal, Ibl, Ic|, Idl, lel, lfl]

e sort arranges the elements of the list from low to high:

In [102]: t= [IdI’ ch’ lel’ lbl, Ial]
t.sort()
print(t)

[lal’ lbl, 'C', Idl, lel]

deleting list elements

e pop modifies the list and returns the element that was removed.
e If you don’t provide an index, it deletes and returns the last element

In [103]: t [|a|’ 'bl, lcl]
X t.pop(l)
print(t)

In [104]: print(x)

b

e Use del if you do not need the removed value

In [105]: ¢t = ['a', 'b', 'c']
del t[1]
print(t)

e If you know the element you want to remove (but not the index), you can use
remove

In [106]: t= ['a', 'b', 'c', ld', lel, lfv]
t.remove('b"')
print(t)

e To remove more than one element, you can use del with a slice index

In [107]: t= [laI, lbl, lcl, Idl, Iel, Ifl]
del t[1l:5]
print(t)

[lal’ lfl]

lists and strings

e A string is a sequence of characters and a list is a sequence of values
e list of characters is not the same as a string.
e To convert from a string to a list of characters, you can use [ist

In [108]: s = 'spam'
t = list(s)
print(t)

[ls’ lpl’ a, ml]

e The [ist function breaks a string into individual letters.
e If you want to break a string into words, you can use the split method

In [109]: s = 'pining for the fjords'
t = s.split()
print(t)

['pining', 'for', 'the', 'fjords']

e An optional argument called a delimiter specifies which characters to use as
word boundaries

In [110]: s = 'spam-spam-spam'
delimiter = '-'
s.split(delimiter)

Out[l110]: ['spam', 'spam', 'spam']

join is the inverse of split.
It takes a list of strings and concatenates the elements.

e join is a string method, so you have to invoke it on the delimiter and pass the list
as a parameter

In [111]: t = ['pining', 'for', 'the', 'fjords']
delimiter = ':'
delimiter.join(t)

Oout[111]: 'pining:for:the:fjords'

Dictionaries

e A dictionary is a mapping between a set of indices (which are called keys) and a
set of values.

e Each key maps to a value.

e The association of a key and a value is called a key-value pair

e The function dict creates a new dictionary with no items

In [112]: eng2sp = dict()
print (eng2sp)

{}
e To add items to the dictionary, you can use square brackets
In [113]: eng2sp['one'] = 'uno'
print(eng2sp)

{'one': 'uno'}

* You can update a dictionary by adding a new entry or a key-value pair

In [114]: eng2sp['two'] = 'dos'
print (eng2sp)
{'one': 'uno', 'two': 'dos'}

* You can create a dictionary as follows

In [115]: eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}
print (eng2sp)
{'one': 'uno', 'two': 'dos', 'three': 'tres'}

e the order of items in a dictionary is unpredictable
e use keys to look up the corresponding value

In [116]: print(eng2sp['three'])

tres
e To delete entries in a dictionary, use del
In [117]: del eng2sp['two']
print (eng2sp)
{'one': 'uno', 'three': 'tres'}

e The clear() function is used to remove all elements of the dictionary

In [118]: eng2sp.clear()
print (eng2sp)

{}

e The len function returns the number of key-value pairs
In [119]: eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}

len(eng2sp)

out[119]: 3

* You can loop through keys or values by using the keys and values functions

In [120]: for keys in eng2sp.keys():
print (keys)

one
two
three

In [121]: for vals in eng2sp.values():
print(vals)

uno
dos
tres

Tuples

e A tuple is a sequence of values
e The values can be any type, and they are indexed by integers.

In [122]: t=(la|, lbl, lcl, Idl, Iel)

e To create a tuple with a single element, you have to include the final comma

In [123]: t1 = ('a',)

type(tl)
out[123]: tuple
In [124]: t2 = ('a')
type(t2)

out[124]: Str

e Another way to create a tuple is the built-in function tuple.
e With no argument, it creates an empty tuple

In [125]: t = tuple()
print(t)

()

e [f the argument is a sequence (string, list or tuple), the result is a tuple with the
elements of the sequence

In [126]: t = tuple('lupins')
print(t)
(lll, lul, Ipl, Iil, lnl, ISI)

e Most list operators also work on tuples. The bracket operator indexes an
element

In [127]: t = ('a', 'b', 'c', 'd', 'e')
print(t[1])

b

e slice operator selects a range of elements

In [128]: print(t[l:],id(t))

('b', 'c', 'd', 'e') 4528738464

e Unlike [ists, tuples are immutable

In [129]: +[0] = 'A"
TypeError Traceback (most recent call last)
<ipython-input-129-7e674cdf20e6> in <module>()
———=> 1 t[0] = 'A"

TypeError: 'tuple' object does not support item assignment

e You can’t modify the elements of a tuple, but you can replace one tuple with
another

In [130]: t = ('A',) + t[1l:]
print(t,id(t))

('A', 'b', 'c', 'd', 'e') 4528742072

Assignment

e Itis often useful to swap the values of two variables using a cumbersome
procedure

In [131]: a

o
o
N

In [132]: temp = a
a=>,
b = temp
print(a,b)

21

e tuple assignment is more elegant

In [133]: a,b = b,a
print(a,b)

12

e The number of variables on the left and the number of values on the right have
to be the same

In [134]: a, b = 1,2,3

ValueError Traceback (most recent call last)
<ipython-input-134-6b644e00ae5e> in <module>()
--—-—->1a, b=1,2,3

ValueError: too many values to unpack (expected 2)

e Tuples can be used to return multiple values from a function

In [135]: quot, rem = divmod(7, 3)
print (quot)

2

In [136]: print(rem)

1

File Handling

e To read/write a file, you have to open it with an appropriate mode as the second
parameter

open(filename, mode)

mode | description

r Opens a file for reading only, default mode
w Opens a file for writing only
a Opens a file for appending only. File pointer is at end of file

rb Opens a file for reading only in binary

wb Opens a file for writing only in binary

In [137]: fout = open('output.txt', 'w')
print (fout)

< io.TextIOWrapper name='output.txt' mode='w' encoding='UTF-8'>
e If the file already exists, opening it in write mode clears out the old data.

o [If the file doesn’t exist, a new one is created.
e The write method puts data into the file.

In [138]: 1linel = "This here's the wattle,\n"
fout.write(linel)

Out[138]: 24

In [139]: 1line2 = "the emblem of our land.\n"
fout.write(line2)

out[139]: 24

e When you are done writing, you have to close the file.

In [140]: fout.close()
!cat output.txt
This here's the wattle,

the emblem of our land.

e Toread data back from the file you need one of these three methods

Method Description

read([number]) Return specified number of characters from the file.
if omitted it will read the entire contents of the file.

readline() Return the next line of the file.

readlines() Read all the lines as a list of strings in the file

In [141]:

Out[1l41]:

In [142]:

In [143]:

out[143]:

In [144]:

e Reading all the data at once.

f = open('myscript.py', 'r')
f.read()

'#!/usr/bin/env python\n\nprint("Hello There!")\n\n'

f.close()

e Reading all lines as an array

f = open('myscript.py', 'r')

f.readlines()

['"#!/usr/bin/env python\n',

f.close()

|\n|’

'print ("Hello There!")\n',

l\nl]

e Reading only one line.

In [145]: f = open('myscript.py', 'r')
f.readline()

Oout[l45]: '#!/usr/bin/env python\n'

In [146]: f.close()

e You can iterate through the file using file pointer.

In [147]: £ =

= open('myscript.py', 'r')
for line in f:

print(line)
f.close()

#!/usr/bin/env python

print("Hello There!")

Formatted output

e The argument of write has to be a string
e convert other values to strings using str

In [148]:

f = open('output.txt', 'w')
x = 52
f.write(str(x))
f.close()
!cat output.txt
52
e An alternative is to use the format operator, %
e The first operand is the format string, and the second operand is a tuple of
expressions.
In [149]: tempc = float(input('Enter Temperature in Celcius: '))

print("%6.2f C = %6.2f F" % (tempc, celcius_ to fahrenheit(tempc)))

Enter Temperature in Celcius: 35
35.00 C = 95.00 F

e The general syntax for print function is print (format string with
placeholder % (variables))

e The general syntax for a format placeholder is $[flags] [width]
[.precision]type

type | datatype

S strings

for F | floating point numbers

dori | integers

e or E | Floating point exponential format

gor G | same as e or E if exponent is greater than -4, f or F otherwise

In [151]:

In [152]:

e If you try to open a file that doesn’t exist, you get an IOError:

fin = open('bad file')

FileNotFoundError Traceback (most recent call last)
<ipython-input-151-a7d7d7ad396b> in <module>()
-——-> 1 fin = open('bad file')

FileNotFoundError: [Errno 2] No such file or directory: 'bad file'

e If you don’t have permission to access a file

fout = open('/etc/passwd', 'w')

PermissionError Traceback (most recent call last)
<ipython-input-152-8a9adbl191927> in <module>()
-———> 1 fout = open('/etc/passwd', 'w')

PermissionError: [Errno 13] Permission denied: '/etc/passwd'

e orif you try to open a directory for reading

In [153]: fin = open('/home"')

IsADirectoryError Traceback (most recent call last)
<ipython-input-153-a2032£f82d461> in <module>()
-——-> 1 fin = open('/home')

IsADirectoryError: [Errno 21] Is a directory: '/home'

e Python provides statements, try and except to allow programmers to gracefully
quit the program

In [154]: try:
fin = open('bad.txt')
for line in fin:
print(line)
fin.close()
except:
print('Something went wrong.')

Something went wrong.

In [155]: 1Icat testl.py

fin = open('bad.txt"')

for line in fin:
print(line)

fin.close()

print('Hello World!')

In [156]: !python testl.py

Traceback (most recent call last):
File "testl.py", line 1, in <module>
fin = open('bad.txt')
FileNotFoundError: [Errno 2] No such file or directory: 'bad.txt'’

In [157]: 1cat test2.py

try:
fin = open('bad.txt')
for line in fin:
print(line)
fin.close()
except:
print('Something went wrong.')

print('Hello World!')

In [158]: Ipython test2.py

Something went wrong.
Hello World!

Modules

e Python module is a normal python file which can store function, variable,
classes, constants etc
e Module helps us to organize related codes
e Popular modules
= math
= numpy
= scipy
= matplotlib
= pandas

= mpidpy

Creating modules

e Create a new file called mymodule.py and write the following code.

In [159]: 1!cat mymodule.py
foo = 100

def hello():
print("i am from mymodule.py")

e This module defines a global variable foo and a function hello
e To use this module in a program, you need to import the module

In [160]: import mymodule

In [161]: mymodule.foo

out[l161]: 100

In [162]:

In [163]:

In [164]:

Out[164]:

mymodule.hello()

i am from mymodule.py

e If you only need to import a variable or function, then use from with import

from mymodule import hello
hello()

i am from mymodule.py

* You can also abbreviate the module name by adding as to the import

import mymodule as my
my . foo

100

NumPy

e NumPy is the fundamental package for scientific computing with Python.
e It contains among other things
= a powerful N-dimensional array object
= sophisticated (broadcasting) functions
= tools for integrating C/C++ and Fortran code
= useful linear algebra, Fourier transform, and random number
capabilities
e NumPy can also be used as an efficient multi-dimensional container of generic
data.
e Numpy arrays are a great alternative to Python Lists

e NumPy’s main object is the homogeneous multidimensional array.
e NumPy’s array class is called ndarray. It is also known by the alias array
e The more important attributes of an ndarray object are:

ndarray.ndim: the number of axes (dimensions) of the array.
ndarray.shape: the dimensions of the array.

ndarray.size: the total number of elements of the array.
ndarray.dtype: an object describing the type of the elements in the
array.

ndarray.itemsize: the size in bytes of each element of the array.
ndarray.data: the buffer containing the actual elements of the array.

e To use Numpy, you need to import the numpy module

convention: import as np and then use the dot notation

In [165]: import numpy as np

Numpy Arrays

e create an array from a regular Python list or tuple using the array function

In [166]: a = np.array([2,3,4])
print(a, a.dtype)

[2 3 4] int64

e array transforms sequences of sequences into two-dimensional arrays, sequences
of sequences of sequences into three-dimensional arrays

In [167]: b = np.array([(l1.2, 3.5, 5.1),(4.1,6.1,0.5)1])
print (b, b.dtype)

5.1]
0.5]] floaté64

e The type of the array can also be explicitly specified at creation time

In [168]: ¢ = np.array([[1,2], [3,4]], dtype=complex)
c

Out[168]: array([[1.+0.], 2.+0.3],
[3.+0.3, 4.40.311)

e The function zeros creates an array full of zeros,

e the function ones creates an array full of ones, and

e the function empty creates an array whose initial content is random and depends
on the state of the memory.

In [169]: print('Zeros: ',np.zeros((3,4)))
print('Ones', np.ones((2,4), dtype=np.float64))
print('Empty', np.empty((2,3)))

Zeros [[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.1]

Ones [[1. 1. 1. 1.]
[1. 1. 1. 1.]]

Empty [[1.2 3.5 5.1]
[4.1 6.1 0.5]]

e NumPy provides a function analogous to range that returns arrays instead of
lists.
In [170]: np.arange(10, 30, 5)

out[170]: array([10, 15, 20, 25])
e The reshape function can be used to convert an array into a matrix

In [171]: = np.arange(l5).reshape(3, 5)

a
a
out[1l71]: array([[O, 1, 2, 3, 41,

[5’ 6’ 7’ 8’ 9]’
[10, 11, 12, 13, 14]])

In [172]:

print("array dimensions: ", a.shape)
print("number of dimensions: ", a.ndim)
print("element types: ", a.dtype.name)
print("size of elements: ", a.itemsize)
print("total number of elements: ",a.size)

print("type of object:",type(a))

array dimensions: (3, 5)

number of dimensions: 2

element types: inté64

size of elements: 8

total number of elements: 15

type of object: <class 'numpy.ndarray'>

e Arithmetic operators on arrays apply elementwise

In [173]: a = np.array([20,30,40,50])
b = np.arange(4)
print('a: ', a)
print('b:', b)
print('a-b:', a-b)
print('B**2', b**2)
print('1l0*sin(a): ', lO*np.sin(a))
print('Which elements of a < 35:', a<35)
print('Elements of a < 35: ',a[a<35])

a: [20 30 40 50]

b: [0 1 2 3]

a-b: [20 29 38 47]

B**2 [0 1 4 9]

l10*sin(a): [9.12945251 -9.88031624 7.4511316 -2.62374854]
Which elements of a < 35: [True True False False]

Elements of a < 35: [20 30]

In [174]:

A = np.array(
B = np.array(
print('A = ', A)
print('B = ', B)
print('A*B = ',
print('A . B
print ('Numpy

A*B)

A. B =

A*B =
[0 4]]

A . B~=
[3 4]]

Numpy A. B =
[3 4]]

[[2 0]
[[5 4]

[[5 4]

(ri,11,
[(r2,01,

[0,1]]
[3,4]1]

', A.dot(B))
', np.dot(A, B))

)
)

e Numpy provides linspace for generating a sequence of linearly spaced numbers
and a random number generator

In [175]: np.linspace(0,2*pi,4)

out[175]: array([0. , 2.0943951 , 4.1887902 , 6.28318531])

In [176]: np.random.random((2,3))

out[176]: array([[0.53718338, 0.61361316, 0.46879668],
[0.09527409, 0.69241596, 0.60845883]])

e NumPy provides mathematical functions such as sin, cos, and exp.

In [177]: B = np.arange(3)
print('B: ',B)
print('exp(B): ',np.exp(B))
print('sqrt(B): ',np.sqrt(B))
C = np.array([2., -1., 4.])
print('C: ', C)
print('B + C: ', np.add(B, C))

B: [0 1 2]
exp(B): [Ll. 2.71828183 7.3890561]
sqrt(B): [O. 1. 1.41421356]

C: [2. -1. 4.]
B+ C: [2. 0. 6.]

Visualization

e Matplotlib is the most popular visualization tool used in Python
e Other visualization tools commonly used are bokeh, seaborn and plot.ly

In [178]:

import matplotlib.pyplot as plt
import numpy as np
$matplotlib inline

Prepare the data
X = np.linspace(0, 10, 100)

Plot the data
plt.plot(x, x, label='linear')

Add a legend
plt.legend()

Show the plot
plt.show()

10 | — Jinear

10

In [179]: plt.plot([1l, 2, 3, 41, [1, 4, 9, 16])

Out[179]: [<matplotlib.lines.Line2D at 0x10dfcc358>]

15 4

14 -

12

10

10 15 20 25 30 35 40

In [180]: plt.plot([1l,2,3,4]1, [1,4,9,16], 'ro')
plt.axis([0, 6, 0, 20])
plt.show()

200

17.5

15.0 A

12.5

10.0

751

5.0 4

25

0.0

e Saving a figure can be done using the savefig() command

In [181]: fig = plt.figure()
ax = fig.add subplot(111l)
ax.plot([1l, 2, 3, 41, [10, 20, 25, 30], color='lightblue', linewidth=3)
ax.scatter([0.3, 3.8, 1.2, 2.5], [11, 25, 9, 26], color='darkgreen', marker='"")
ax.set x1im(0.5, 4.5)
fig.savefig('my figure.png')

25 - &

20 4

15 A

10 4

05 10 15 20 25 30 35 40 45

In [182]: from IPython.display import Image
Image('my figure.png')

out[182]:

25 4

20 4

15

10 4

05 10 15 20 25 30 35

In [183]:

t np.arange(0., 5.

4

0.2)

red dashes, blue squares and green triangles

plt.plot(t, t, 'r--'
plt.show()

14

t, t**2, 'bs', t, t**3, 'g"")

100 1

20 1

In [184]:

def f(t):

return np.exp(-t) * np.cos(2*np.pi*t)
tl = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)
plt.figure(l)
plt.subplot(211)
plt.plot(tl, f£(tl), 'bo', t2, £(t2), 'k')
plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r--")

plt.show()

14a A

05 4

00

-0.5
T T
] 1 2 3 4 5
1 Y - Yy F - % i
‘., .lr ‘1 if "-II 1 \'.I ,r \ r
1 I
1 ! i i 1 ! ! I I
! oo r 3 I it ;
I i
a ! ! ' I \ i 4 ! ! f
1;] h \ Jn’ 1 I) 'r 1 i
\ ! 1
l.'. JJ 'I! T 1 i il. J.l \
J i
vt Lo v A v
-1 * W’ AT - AT
T T
] 1 2 3 4 5

In [185]: np.random.seed(19680801)

mu, sigma = 100, 15
X = mu + sigma * np.random.randn(10000)

the histogram of the data
n, bins, patches = plt.hist(x, 50, density=1, facecolor='g', alpha=0.75)

plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')

plt.text (60, .025, r'$\mu=100,\ \sigma=15$"')
plt.axis([40, 160, 0, 0.03])

plt.grid(True)

plt.show()

Histogram of 1Q

0030

0025 1

0020 1

0015 1

Probabilicy

001D A

0005 4

0000 -
40 G0 BO 164 120 144 160

Smiarts

In [186]: N = 5
menMeans = (20, 35, 30, 35, 27)
womenMeans = (25, 32, 34, 20, 25)
menStd = (2, 3, 4, 1, 2)
womensStd = (3, 5, 2, 3, 3)
ind = np.arange(N) # the x locations for the groups
width = 0.35 # the width of the bars: can also be len(x) sequence

pl = plt.bar(ind, menMeans, width, yerr=menStd)
p2 plt.bar(ind, womenMeans, width,
bottom=menMeans, yerr=womenStd)

plt.ylabel('Scores')

plt.title('Scores by group and gender')
plt.xticks(ind, ('Gl', 'G2', 'G3', 'G4', 'G5'"))
plt.yticks(np.arange(0, 81, 10))
plt.legend((pl[0], p2[0]), ('Men', 'Women'))

plt.show()
&0 Scores by group and gender
I Men
70 4 s Women
m -
EU -
§ w]
oA
30 -
20 1
lu 4

G1 G2 G3 = G5

In [187]: 1labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
sizes = [15, 30, 45, 10]
explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs')

figl, axl = plt.subplots()
axl.pie(sizes, explode=explode, labels=labels, autopct='%1.1£%%',
shadow=True, startangle=90)
axl.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.

plt.show()

Hogs

In [188]: x = np.linspace(0, 5, 50)
y = np.linspace(0, 5, 50)[:, np.newaxis]

z = np.sin(x) ** 10 + np.cos(1l0 + y * x) * np.cos(x)

plt.imshow(z, origin='lower', extent=[0, 5, 0, 5],
cmap='viridis')

plt.colorbar();

100
075
050
025

000

(o)

-0.25

—0.50

[

-0.75

Further Reading: Python Books

e Think Python 2e - Allen B. Downey

e Automate the Boring Stuff with Python - Al Sweigart

e Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython
- Wes McKinney

e Think Stats - Allen B. Downey

e Think Bayes: Bayesian Statistics in Python - Allen B. Downey

e Python Data Science Handbook - Jake VanderPlas

