
Parallel Programming Concepts
HPC Workshop: Parallel Programming

Alexander B. Pacheco

Research Computing

http://researchcomputing.lehigh.edu


Outline

1 Introduction

2 Parallel programming models

3 Parallel programming hurdles

4 Heterogeneous computing

Parallel Programming Concepts 2 / 54 Lehigh University Research Computing



Outline

1 Introduction

2 Parallel programming models

3 Parallel programming hurdles

4 Heterogeneous computing

Parallel Programming Concepts 3 / 54 Lehigh University Research Computing



What is Serial Computing?

Traditionally, software has been written for serial computation:
A problem is broken into a discrete series of instructions
Instructions are executed sequentially one after another
Executed on a single processor
Only one instruction may execute at any moment in time
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What is Parallel Computing?

In the simplest sense, parallel computing is the simultaneous use of
multiple compute resources to solve a computational problem:

A problem is broken into discrete parts that can be solved concurrently
Each part is further broken down to a series of instructions
Instructions from each part execute simultaneously on different processors
An overall control/coordination mechanism is employed
The computational problem should be able to:

Be broken apart into discrete pieces of work that can be solved
simultaneously;
Execute multiple program instructions at any moment in time;
Be solved in less time with multiple compute resources than with a single
compute resource.

The compute resources are typically:
A single computer with multiple processors/cores
An arbitrary number of such computers connected by a network
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Why Parallel Computing?

Parallel computing might be the only way to achieve certain goals
Problem size (memory, disk etc.)
Time needed to solve problems

Parallel computing allows us to take advantage of ever-growing
parallelism at all levels

Multi-core, many-core, cluster, grid, cloud, · · ·
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What are Parallel Computers?

Virtually all stand-alone computers today are parallel from a hardware
perspective:

Multiple functional units (L1 cache, L2 cache, branch, prefetch, decode,
floating-point, graphics processing (GPU), integer, etc.)
Multiple execution units/cores
Multiple hardware threads
Networks connect multiple stand-alone computers (nodes) to make larger
parallel computer clusters.
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Why Use Parallel Computing? I

The Real World is Massively Parallel:
In the natural world, many complex, interrelated events are happening at
the same time, yet within a temporal sequence.
Compared to serial computing, parallel computing is much better suited
for modeling, simulating and understanding complex, real world
phenomena.
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Why Use Parallel Computing? II

SAVE TIME AND/OR MONEY:
In theory, throwing more resources at a task will shorten its time to
completion, with potential cost savings.
Parallel computers can be built from cheap, commodity components.

SOLVE LARGER / MORE COMPLEX PROBLEMS:
Many problems are so large and/or complex that it is impractical or
impossible to solve them on a single computer, especially given limited
computer memory.
Example: "Grand Challenge Problems"
(en.wikipedia.org/wiki/Grand_Challenge) requiring PetaFLOPS and
PetaBytes of computing resources.
Example: Web search engines/databases processing millions of
transactions every second

PROVIDE CONCURRENCY:
A single compute resource can only do one thing at a time. Multiple
compute resources can do many things simultaneously.
Example: Collaborative Networks provide a global venue where people
from around the world can meet and conduct work "virtually".
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Why Use Parallel Computing? III

TAKE ADVANTAGE OF NON-LOCAL RESOURCES:
Using compute resources on a wide area network, or even the Internet
when local compute resources are scarce or insufficient.
Example: SETI@home (setiathome.berkeley.edu) over 1.5 million users
in nearly every country in the world. Source:
www.boincsynergy.com/stats/ (June, 2015).
Example: Folding@home (folding.stanford.edu) uses over 160,000
computers globally (June, 2015)

MAKE BETTER USE OF UNDERLYING PARALLEL HARDWARE:

Modern computers, even laptops, are parallel in architecture with multiple
processors/cores.
Parallel software is specifically intended for parallel hardware with
multiple cores, threads, etc.
In most cases, serial programs run on modern computers "waste" potential
computing power.
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Why Use Parallel Computing? IV

The Future:

During the past 20+ years, the trends
indicated by ever faster networks,
distributed systems, and
multi-processor computer
architectures (even at the desktop
level) clearly show that parallelism
is the future of computing.

In this same time period, there has
been a greater than 500,000x
increase in supercomputer
performance, with no end currently
in sight.

The race is already on for Exascale
Computing!

Exaflop = 1018 calculations per
second
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Consider an example of moving a pile of boxes from location A to
location B
Lets say, it takes x mins per box. Total time required to move the boxes
is 25x.
How do you speed up moving 25 boxes from Location A to Location B?
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You enlist more people to move the boxes.
If 5 people move the boxes simultaneously, it should theoretically take
5x mins to move 25 boxes.
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You enlist more people to move the boxes.
If 5 people move the boxes simultaneously, it should theoretically take
5x mins to move 25 boxes.

Number of People Time (mins)
2 13x
3 9x
4 7x
5 5x
6 5x

7-8 4x
9-12 3x

13-24 2x
≥25 1x
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Evaluating Parallel Programs

Speedup
Let NProc be the number of parallel processes

Speedup(NProc) =
Time used by best serial program
Time used by parallel program

Speedup is usually between 0 and NProc

Efficiency

Efficiency(NProc) =
Speedup(NProc)

NProc

Efficiency is usually between 0 and 1
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Speedup as a function ofNProc

Ideally
The speedup will be linear

Even better
(in very rare cases) we can
have superlinear speedup

But in reality
Efficiency decreases with
increasing number of processes
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Amdahl’s Law

Let f be the fraction of the serial program that cannot be parallelized
Assume that the rest of the serial program can be perfectly parallelized
(linear speedup)

Timeparallel = Timeserial ·
(
f +

1− f

Nproc

)
Or

Speedup =
1

f +
1− f

Nproc

≤ 1

f
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Maximal Possible Speedup
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Amdahl’s Law

What Amdahl’s law says
It puts an upper bound on speedup (for a given f ), no matter how many
processes are thrown at it

Beyond Amdahl’s law
Parallelization adds overhead (communication)
f could be a variable too

It may drop when problem size and Nproc increase

Parallel algorithm is different from the serial one
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Writing a parallel program step by step

1 Start from serial programs as a baseline
Something to check correctness and efficiency against

2 Analyze and profile the serial program
Identify the "hotspot"
Identify the parts that can be parallelized

3 Parallelize code incrementally
4 Check correctness of the parallel code
5 Iterate step 3 and 4
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A REAL example of parallel computing

Dense matrix multiplication Mmd ×Ndn = Pmn

Pm,n =

d∑
k=1

Mm,k ×Nk,n

P2,2 = M2,1 ∗N1,2 +M2,2 ∗N2,2 +M2,3 ∗N3,2 +M2,4 ∗N4,2
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Parallelizing matrix multiplication

Divide work among processors
In our 4x4 example

Assuming 4 processors
Each responsible for a 2x2 tile (submatrix)
Can we do 4x1 or 1x4?
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Pseudo Code

Serial
for i = 1, 4
for j = 1, 4
for k = 1, 4

P(i , j) +=M(i ,k)*N(k, j);

Parallel
for i = istart , iend
for j = jstart , jend
for k = 1, 4

P(i , j) +=M(i ,k)*N(k, j);
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Single Program Multiple Data (SPMD)

All program instances execute same program
Data parallel - Each instance works on different part of the data
The majority of parallel programs are of this type
Can also have

SPSD: serial program
MPSD: rare
MPMD
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Memory system models

Different ways of sharing data among processors
Distributed Memory
Shared Memory
Other memory models

Hybrid model
PGAS (Partitioned Global Address Space)
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Distributed Memory Model

Each process has its own address space
Data is local to each process

Data sharing is achieved via explicit message passing
Example

MPI

Network

Main
Memory

CPU

Cache

Main
Memory

CPU

Cache

Main
Memory

CPU

Cache

Main
Memory

CPU

Cache
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Shared Memory Model

All threads can access the global memory space.
Data sharing achieved via writing to/reading from the same memory
location
Example

OpenMP
Pthreads

Main Memory

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU
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Shared vs Distributed
Shared

Pros
Global address space is user
friendly
Data sharing is fast

Cons
Lack of scalability
Data conflict issues

Distributed

Pros
Memory scalable with
number of processors
Easier and cheaper to build

Cons
Difficult load balancing
Data sharing is slow
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Hybrid model

Clusters of SMP (symmetric multi-processing) nodes dominate
nowadays
Hybrid model matches the physical structure of SMP clusters

OpenMP within nodes
MPI between nodes
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Potential benefits of hybrid model

Message-passing within nodes (loopback) is eliminated
Number of MPI processes is reduced, which means

Message size increases
Message number decreases

Memory usage could be reduced
Eliminate replicated data

Those are good, but in reality, (most) pure MPI programs run as fast
(sometimes faster than) as hybrid ones · · ·
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Reasons why NOT to use hybrid model

Some (most?) MPI libraries already use internally different protocols
Shared memory data exchange within SMP nodes
Network communication between SMP nodes

Overhead associated with thread management
Thread fork/join
Additional synchronization with hybrid programs
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Parallel Programming Hurdles

Hidden serializations
Overhead caused by parallelization
Load balancing
Synchronization issues
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Hidden Serialization

Back to our box moving example
What if there is a very long corridor that allows only one work to pass
at a time between Location A and B?
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Hidden Serialization

It is the part in serial programs that is hard or impossible to parallelize
Intrinsic serialization (the f in Amdahl’s law)

Examples of hidden serialization:
System resources contention, e.g. I/O hotspot
Internal serialization, e.g. library functions that cannot be executed in
parallel for correctness
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Communication overhead

Sharing data across network is slow
Mainly a problem for distributed memory systems

There are two parts of it
Latency: startup cost for each transfer
Bandwidth: extra cost for each byte

Reduce communication overhead
Avoid unnecessary message passing
Reduce number of messages by combining them
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Memory Heirarchy

Avoid unnecessary data transfer
Load data in blocks (spatial locality)
Reuse loaded data (temporal locality)
All these apply to serial programs as well
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Load balancing

Back to our box moving example, again
Anyone see a problem?
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Load balancing

Work load not evenly distributed
Some are working while others are idle
The slowest worker dominates in extreme cases

Solutions
Explore various decomposition techniques
Dynamic load balancing

Hard for distributed memory
Adds overhead
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Synchronization issues - deadlock

Often caused by "blocking" communication operations
"Blocking" means "I will not proceed until the current operation is over"

Solution
Use "non-blocking" operations
Caution: trade-off between data safety and performance
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Heterogeneous computing

A heterogeneous system solves tasks using different types of processing
units

CPUs
GPUs
DSPs
Co-processors
· · ·

As opposed to homogeneous systems, e.g. SMP nodes with CPUs only
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The Free Lunch Is Over

Source: Herb Sutter
http://www.gotw.ca/publications/concurrency-ddj.htm
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Power and Clock Speed
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Power efficiency is the key

We have been able to make computer run faster by adding more
transistors

Moore’s law
Unfortunately, not any more

Power consumption/heat generation limits packing density
Power ∼ speed2

Solution
Reduce each core’s speed and use more cores - increased parallelism

Source: John Urbanic, PSC
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Graphic Processing Units (GPUs)

Massively parallel many-core architecture
Thousands of cores capable of running millions of threads
Data parallelism

GPUs are traditionally dedicated for graphic rendering, but become
more versatile thanks to

Hardware: faster data transfer and more on-board memory
Software: libraries that provide more general purposed functions

GPU vs CPU
GPUs are very effectively for certain type of tasks, but we still need the
general purpose CPUs
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CPU vs GPU
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NVIDIA Tesla T4

GPU Architecture: NVIDIA
Turing
Tensor Cores: 320
CUDA Cores: 2560
Performance:

Single Precision: 8.1 TFLOPS
Mixed Precision (FP16/FP32):
65 TFLOPS
INT8: 130 TOPS
INT4: 260 TOPS

Memory (GDDR5): 16GB
Memory (Bandwidth): 320GBs
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GPU Programming

a hierarchy of thread groups, shared memories, and barrier
synchronization exposed to programmer as a minimal set of language
extensions
provide fine-grained data parallelism and thread parallelism, nested
within coarse-grained data parallelism and task parallelism
guide programmer to partitionthe problem into coarse sub-problems
solved independently in parallel by blocks of threads, and each
sub-problem into finer pieces that can be solved cooperatively in
parallel by all threads within the block
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Streaming Multiprocessors

A GPU is built around an array of Streaming Multiprocessors (SMs).
A multithreaded program is partitioned into blocks of threads that
execute independently from each other.
a GPU with more multiprocessors will automatically execute the
program in less time than a GPU with fewer multiprocessors.
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Memory Heirarchy
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GPU Program
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GPU programming strategies

GPUs need to copy data from main memory to its onboard memory and
copy them back

Data transfer over PCIe is the bottleneck, so one needs to

Avoid data transfer and reuse data
Overlap data transfer and computation
Massively parallel, so it is a crime to do anything antiparallel

Need to launch enough threads in parallel to keep the device busy
Threads need to access contiguous data
Thread divergence needs to be eliminated

Fine Grained Parallelism: relatively small amounts of computational
work are done between communication events
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Recommended Further Reading

"Designing and Building Parallel Programs", Ian Foster - from the early days of
parallel computing, but still illuminating.

"Introduction to Parallel Computing", Ananth Grama, Anshul Gupta, George
Karypis, Vipin Kumar.

University of Oregon - Intel Parallel Computing Curriculum

UC Berkeley CS267, Applications of Parallel Computing, Prof. Jim Demmel,
UCB Spring 2021

"Programming on Parallel Machines", Norm Matloff, UC Davis.

Cornell Virtual Workshop: Parallel Programming Concepts and
High-Performance Computing

Introduction to High Performance Scientific Computing", Victor Eijkhout,
TACC

COMP 705: Advanced Parallel Computing (Fall, 2017), SDSU, Prof. Mary
Thomas

Slides based on material from https://hpc.llnl.gov/training/tutorials
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http://www.mcs.anl.gov/~itf/dbpp/
http://www.mcs.anl.gov/~itf/dbpp/
http://www-users.cs.umn.edu/~karypis/parbook/
http://www-users.cs.umn.edu/~karypis/parbook/
https://ipcc.cs.uoregon.edu/curriculum.html
https://sites.google.com/lbl.gov/cs267-spr2021
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBookS2011.pdf
https://cvw.cac.cornell.edu/Parallel/
https://cvw.cac.cornell.edu/Parallel/
https://pages.tacc.utexas.edu/~eijkhout/istc/istc.html
https://pages.tacc.utexas.edu/~eijkhout/istc/istc.html
https://edoras.sdsu.edu/~mthomas/f17.705
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