
Parallel Programming Concepts
HPC Workshop: Parallel Programming

Alexander B. Pacheco

Research Computing

http://researchcomputing.lehigh.edu


Outline

1 Introduction

2 Parallel programming models

3 Parallel programming hurdles

4 Heterogeneous computing

Parallel Programming Concepts 2 / 54 Lehigh University Research Computing



Outline

1 Introduction

2 Parallel programming models

3 Parallel programming hurdles

4 Heterogeneous computing

Parallel Programming Concepts 3 / 54 Lehigh University Research Computing



What is Serial Computing?

Traditionally, software has been written for serial computation:
A problem is broken into a discrete series of instructions
Instructions are executed sequentially one after another
Executed on a single processor
Only one instruction may execute at any moment in time

Parallel Programming Concepts 4 / 54 Lehigh University Research Computing



What is Parallel Computing?

In the simplest sense, parallel computing is the simultaneous use of
multiple compute resources to solve a computational problem:

A problem is broken into discrete parts that can be solved concurrently
Each part is further broken down to a series of instructions
Instructions from each part execute simultaneously on different processors
An overall control/coordination mechanism is employed
The computational problem should be able to:

Be broken apart into discrete pieces of work that can be solved
simultaneously;
Execute multiple program instructions at any moment in time;
Be solved in less time with multiple compute resources than with a single
compute resource.

The compute resources are typically:
A single computer with multiple processors/cores
An arbitrary number of such computers connected by a network

Parallel Programming Concepts 5 / 54 Lehigh University Research Computing



Why Parallel Computing?

Parallel computing might be the only way to achieve certain goals
Problem size (memory, disk etc.)
Time needed to solve problems

Parallel computing allows us to take advantage of ever-growing
parallelism at all levels

Multi-core, many-core, cluster, grid, cloud, · · ·

Parallel Programming Concepts 6 / 54 Lehigh University Research Computing



What are Parallel Computers?

Virtually all stand-alone computers today are parallel from a hardware
perspective:

Multiple functional units (L1 cache, L2 cache, branch, prefetch, decode,
floating-point, graphics processing (GPU), integer, etc.)
Multiple execution units/cores
Multiple hardware threads
Networks connect multiple stand-alone computers (nodes) to make larger
parallel computer clusters.

Parallel Programming Concepts 7 / 54 Lehigh University Research Computing



Why Use Parallel Computing? I

The Real World is Massively Parallel:
In the natural world, many complex, interrelated events are happening at
the same time, yet within a temporal sequence.
Compared to serial computing, parallel computing is much better suited
for modeling, simulating and understanding complex, real world
phenomena.

Parallel Programming Concepts 8 / 54 Lehigh University Research Computing



Why Use Parallel Computing? II

SAVE TIME AND/OR MONEY:
In theory, throwing more resources at a task will shorten its time to
completion, with potential cost savings.
Parallel computers can be built from cheap, commodity components.

SOLVE LARGER / MORE COMPLEX PROBLEMS:
Many problems are so large and/or complex that it is impractical or
impossible to solve them on a single computer, especially given limited
computer memory.
Example: "Grand Challenge Problems"
(en.wikipedia.org/wiki/Grand_Challenge) requiring PetaFLOPS and
PetaBytes of computing resources.
Example: Web search engines/databases processing millions of
transactions every second

PROVIDE CONCURRENCY:
A single compute resource can only do one thing at a time. Multiple
compute resources can do many things simultaneously.
Example: Collaborative Networks provide a global venue where people
from around the world can meet and conduct work "virtually".

Parallel Programming Concepts 9 / 54 Lehigh University Research Computing



Why Use Parallel Computing? III

TAKE ADVANTAGE OF NON-LOCAL RESOURCES:
Using compute resources on a wide area network, or even the Internet
when local compute resources are scarce or insufficient.
Example: SETI@home (setiathome.berkeley.edu) over 1.5 million users
in nearly every country in the world. Source:
www.boincsynergy.com/stats/ (June, 2015).
Example: Folding@home (folding.stanford.edu) uses over 160,000
computers globally (June, 2015)

MAKE BETTER USE OF UNDERLYING PARALLEL HARDWARE:

Modern computers, even laptops, are parallel in architecture with multiple
processors/cores.
Parallel software is specifically intended for parallel hardware with
multiple cores, threads, etc.
In most cases, serial programs run on modern computers "waste" potential
computing power.

Parallel Programming Concepts 10 / 54 Lehigh University Research Computing



Why Use Parallel Computing? IV

The Future:

During the past 20+ years, the trends
indicated by ever faster networks,
distributed systems, and
multi-processor computer
architectures (even at the desktop
level) clearly show that parallelism
is the future of computing.

In this same time period, there has
been a greater than 500,000x
increase in supercomputer
performance, with no end currently
in sight.

The race is already on for Exascale
Computing!

Exaflop = 1018 calculations per
second

Parallel Programming Concepts 11 / 54 Lehigh University Research Computing



Consider an example of moving a pile of boxes from location A to
location B
Lets say, it takes x mins per box. Total time required to move the boxes
is 25x.
How do you speed up moving 25 boxes from Location A to Location B?

Parallel Programming Concepts 12 / 54 Lehigh University Research Computing



You enlist more people to move the boxes.
If 5 people move the boxes simultaneously, it should theoretically take
5x mins to move 25 boxes.

Parallel Programming Concepts 13 / 54 Lehigh University Research Computing



You enlist more people to move the boxes.
If 5 people move the boxes simultaneously, it should theoretically take
5x mins to move 25 boxes.

Number of People Time (mins)
2 13x
3 9x
4 7x
5 5x
6 5x

7-8 4x
9-12 3x

13-24 2x
≥25 1x

Parallel Programming Concepts 13 / 54 Lehigh University Research Computing



Evaluating Parallel Programs

Speedup
Let NProc be the number of parallel processes

Speedup(NProc) =
Time used by best serial program
Time used by parallel program

Speedup is usually between 0 and NProc

Efficiency

Efficiency(NProc) =
Speedup(NProc)

NProc

Efficiency is usually between 0 and 1

Parallel Programming Concepts 14 / 54 Lehigh University Research Computing



Speedup as a function ofNProc

Ideally
The speedup will be linear

Even better
(in very rare cases) we can
have superlinear speedup

But in reality
Efficiency decreases with
increasing number of processes

Parallel Programming Concepts 15 / 54 Lehigh University Research Computing



Amdahl’s Law

Let f be the fraction of the serial program that cannot be parallelized
Assume that the rest of the serial program can be perfectly parallelized
(linear speedup)

Timeparallel = Timeserial ·
(
f +

1− f

Nproc

)
Or

Speedup =
1

f +
1− f

Nproc

≤ 1

f

Parallel Programming Concepts 16 / 54 Lehigh University Research Computing



Maximal Possible Speedup

Parallel Programming Concepts 17 / 54 Lehigh University Research Computing



Amdahl’s Law

What Amdahl’s law says
It puts an upper bound on speedup (for a given f ), no matter how many
processes are thrown at it

Beyond Amdahl’s law
Parallelization adds overhead (communication)
f could be a variable too

It may drop when problem size and Nproc increase

Parallel algorithm is different from the serial one

Parallel Programming Concepts 18 / 54 Lehigh University Research Computing



Writing a parallel program step by step

1 Start from serial programs as a baseline
Something to check correctness and efficiency against

2 Analyze and profile the serial program
Identify the "hotspot"
Identify the parts that can be parallelized

3 Parallelize code incrementally
4 Check correctness of the parallel code
5 Iterate step 3 and 4

Parallel Programming Concepts 19 / 54 Lehigh University Research Computing



A REAL example of parallel computing

Dense matrix multiplication Mmd ×Ndn = Pmn

Pm,n =

d∑
k=1

Mm,k ×Nk,n

P2,2 = M2,1 ∗N1,2 +M2,2 ∗N2,2 +M2,3 ∗N3,2 +M2,4 ∗N4,2

Parallel Programming Concepts 20 / 54 Lehigh University Research Computing



Parallelizing matrix multiplication

Divide work among processors
In our 4x4 example

Assuming 4 processors
Each responsible for a 2x2 tile (submatrix)
Can we do 4x1 or 1x4?

Parallel Programming Concepts 21 / 54 Lehigh University Research Computing



Pseudo Code

Serial
for i = 1, 4
for j = 1, 4
for k = 1, 4

P(i , j) +=M(i ,k)*N(k, j);

Parallel
for i = istart , iend
for j = jstart , jend
for k = 1, 4

P(i , j) +=M(i ,k)*N(k, j);

Parallel Programming Concepts 22 / 54 Lehigh University Research Computing



Outline

1 Introduction

2 Parallel programming models

3 Parallel programming hurdles

4 Heterogeneous computing

Parallel Programming Concepts 23 / 54 Lehigh University Research Computing



Single Program Multiple Data (SPMD)

All program instances execute same program
Data parallel - Each instance works on different part of the data
The majority of parallel programs are of this type
Can also have

SPSD: serial program
MPSD: rare
MPMD

Parallel Programming Concepts 24 / 54 Lehigh University Research Computing



Memory system models

Different ways of sharing data among processors
Distributed Memory
Shared Memory
Other memory models

Hybrid model
PGAS (Partitioned Global Address Space)

Parallel Programming Concepts 25 / 54 Lehigh University Research Computing



Distributed Memory Model

Each process has its own address space
Data is local to each process

Data sharing is achieved via explicit message passing
Example

MPI

Network

Main
Memory

CPU

Cache

Main
Memory

CPU

Cache

Main
Memory

CPU

Cache

Main
Memory

CPU

Cache

Parallel Programming Concepts 26 / 54 Lehigh University Research Computing



Shared Memory Model

All threads can access the global memory space.
Data sharing achieved via writing to/reading from the same memory
location
Example

OpenMP
Pthreads

Main Memory

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Parallel Programming Concepts 27 / 54 Lehigh University Research Computing



Shared vs Distributed
Shared

Pros
Global address space is user
friendly
Data sharing is fast

Cons
Lack of scalability
Data conflict issues

Distributed

Pros
Memory scalable with
number of processors
Easier and cheaper to build

Cons
Difficult load balancing
Data sharing is slow

Parallel Programming Concepts 28 / 54 Lehigh University Research Computing



Hybrid model

Clusters of SMP (symmetric multi-processing) nodes dominate
nowadays
Hybrid model matches the physical structure of SMP clusters

OpenMP within nodes
MPI between nodes

Network

Main Memory

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Main Memory

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Main Memory

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Main Memory

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Parallel Programming Concepts 29 / 54 Lehigh University Research Computing



Potential benefits of hybrid model

Message-passing within nodes (loopback) is eliminated
Number of MPI processes is reduced, which means

Message size increases
Message number decreases

Memory usage could be reduced
Eliminate replicated data

Those are good, but in reality, (most) pure MPI programs run as fast
(sometimes faster than) as hybrid ones · · ·

Parallel Programming Concepts 30 / 54 Lehigh University Research Computing



Reasons why NOT to use hybrid model

Some (most?) MPI libraries already use internally different protocols
Shared memory data exchange within SMP nodes
Network communication between SMP nodes

Overhead associated with thread management
Thread fork/join
Additional synchronization with hybrid programs

Parallel Programming Concepts 31 / 54 Lehigh University Research Computing



Outline

1 Introduction

2 Parallel programming models

3 Parallel programming hurdles

4 Heterogeneous computing

Parallel Programming Concepts 32 / 54 Lehigh University Research Computing



Parallel Programming Hurdles

Hidden serializations
Overhead caused by parallelization
Load balancing
Synchronization issues

Parallel Programming Concepts 33 / 54 Lehigh University Research Computing



Hidden Serialization

Back to our box moving example
What if there is a very long corridor that allows only one work to pass
at a time between Location A and B?

Parallel Programming Concepts 34 / 54 Lehigh University Research Computing



Hidden Serialization

It is the part in serial programs that is hard or impossible to parallelize
Intrinsic serialization (the f in Amdahl’s law)

Examples of hidden serialization:
System resources contention, e.g. I/O hotspot
Internal serialization, e.g. library functions that cannot be executed in
parallel for correctness

Parallel Programming Concepts 35 / 54 Lehigh University Research Computing



Communication overhead

Sharing data across network is slow
Mainly a problem for distributed memory systems

There are two parts of it
Latency: startup cost for each transfer
Bandwidth: extra cost for each byte

Reduce communication overhead
Avoid unnecessary message passing
Reduce number of messages by combining them

Parallel Programming Concepts 36 / 54 Lehigh University Research Computing



Memory Heirarchy

Avoid unnecessary data transfer
Load data in blocks (spatial locality)
Reuse loaded data (temporal locality)
All these apply to serial programs as well

Parallel Programming Concepts 37 / 54 Lehigh University Research Computing



Load balancing

Back to our box moving example, again
Anyone see a problem?

Parallel Programming Concepts 38 / 54 Lehigh University Research Computing



Load balancing

Work load not evenly distributed
Some are working while others are idle
The slowest worker dominates in extreme cases

Solutions
Explore various decomposition techniques
Dynamic load balancing

Hard for distributed memory
Adds overhead

Parallel Programming Concepts 39 / 54 Lehigh University Research Computing



Synchronization issues - deadlock

Often caused by "blocking" communication operations
"Blocking" means "I will not proceed until the current operation is over"

Solution
Use "non-blocking" operations
Caution: trade-off between data safety and performance

Parallel Programming Concepts 40 / 54 Lehigh University Research Computing



Outline

1 Introduction

2 Parallel programming models

3 Parallel programming hurdles

4 Heterogeneous computing

Parallel Programming Concepts 41 / 54 Lehigh University Research Computing



Heterogeneous computing

A heterogeneous system solves tasks using different types of processing
units

CPUs
GPUs
DSPs
Co-processors
· · ·

As opposed to homogeneous systems, e.g. SMP nodes with CPUs only

Parallel Programming Concepts 42 / 54 Lehigh University Research Computing



The Free Lunch Is Over

Source: Herb Sutter
http://www.gotw.ca/publications/concurrency-ddj.htm

Parallel Programming Concepts 43 / 54 Lehigh University Research Computing



Power and Clock Speed

Parallel Programming Concepts 44 / 54 Lehigh University Research Computing



Power efficiency is the key

We have been able to make computer run faster by adding more
transistors

Moore’s law
Unfortunately, not any more

Power consumption/heat generation limits packing density
Power ∼ speed2

Solution
Reduce each core’s speed and use more cores - increased parallelism

Source: John Urbanic, PSC

Parallel Programming Concepts 45 / 54 Lehigh University Research Computing



Graphic Processing Units (GPUs)

Massively parallel many-core architecture
Thousands of cores capable of running millions of threads
Data parallelism

GPUs are traditionally dedicated for graphic rendering, but become
more versatile thanks to

Hardware: faster data transfer and more on-board memory
Software: libraries that provide more general purposed functions

GPU vs CPU
GPUs are very effectively for certain type of tasks, but we still need the
general purpose CPUs

Parallel Programming Concepts 46 / 54 Lehigh University Research Computing



CPU vs GPU

Parallel Programming Concepts 47 / 54 Lehigh University Research Computing



NVIDIA Tesla T4

GPU Architecture: NVIDIA
Turing
Tensor Cores: 320
CUDA Cores: 2560
Performance:

Single Precision: 8.1 TFLOPS
Mixed Precision (FP16/FP32):
65 TFLOPS
INT8: 130 TOPS
INT4: 260 TOPS

Memory (GDDR5): 16GB
Memory (Bandwidth): 320GBs

Parallel Programming Concepts 48 / 54 Lehigh University Research Computing



GPU Programming

a hierarchy of thread groups, shared memories, and barrier
synchronization exposed to programmer as a minimal set of language
extensions
provide fine-grained data parallelism and thread parallelism, nested
within coarse-grained data parallelism and task parallelism
guide programmer to partitionthe problem into coarse sub-problems
solved independently in parallel by blocks of threads, and each
sub-problem into finer pieces that can be solved cooperatively in
parallel by all threads within the block

Parallel Programming Concepts 49 / 54 Lehigh University Research Computing



Streaming Multiprocessors

A GPU is built around an array of Streaming Multiprocessors (SMs).
A multithreaded program is partitioned into blocks of threads that
execute independently from each other.
a GPU with more multiprocessors will automatically execute the
program in less time than a GPU with fewer multiprocessors.

Parallel Programming Concepts 50 / 54 Lehigh University Research Computing



Memory Heirarchy

Parallel Programming Concepts 51 / 54 Lehigh University Research Computing



GPU Program

Parallel Programming Concepts 52 / 54 Lehigh University Research Computing



GPU programming strategies

GPUs need to copy data from main memory to its onboard memory and
copy them back

Data transfer over PCIe is the bottleneck, so one needs to

Avoid data transfer and reuse data
Overlap data transfer and computation
Massively parallel, so it is a crime to do anything antiparallel

Need to launch enough threads in parallel to keep the device busy
Threads need to access contiguous data
Thread divergence needs to be eliminated

Fine Grained Parallelism: relatively small amounts of computational
work are done between communication events

Parallel Programming Concepts 53 / 54 Lehigh University Research Computing



Recommended Further Reading

"Designing and Building Parallel Programs", Ian Foster - from the early days of
parallel computing, but still illuminating.

"Introduction to Parallel Computing", Ananth Grama, Anshul Gupta, George
Karypis, Vipin Kumar.

University of Oregon - Intel Parallel Computing Curriculum

UC Berkeley CS267, Applications of Parallel Computing, Prof. Jim Demmel,
UCB Spring 2021

"Programming on Parallel Machines", Norm Matloff, UC Davis.

Cornell Virtual Workshop: Parallel Programming Concepts and
High-Performance Computing

Introduction to High Performance Scientific Computing", Victor Eijkhout,
TACC

COMP 705: Advanced Parallel Computing (Fall, 2017), SDSU, Prof. Mary
Thomas

Slides based on material from https://hpc.llnl.gov/training/tutorials

Parallel Programming Concepts 54 / 54 Lehigh University Research Computing

http://www.mcs.anl.gov/~itf/dbpp/
http://www.mcs.anl.gov/~itf/dbpp/
http://www-users.cs.umn.edu/~karypis/parbook/
http://www-users.cs.umn.edu/~karypis/parbook/
https://ipcc.cs.uoregon.edu/curriculum.html
https://sites.google.com/lbl.gov/cs267-spr2021
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBookS2011.pdf
https://cvw.cac.cornell.edu/Parallel/
https://cvw.cac.cornell.edu/Parallel/
https://pages.tacc.utexas.edu/~eijkhout/istc/istc.html
https://pages.tacc.utexas.edu/~eijkhout/istc/istc.html
https://edoras.sdsu.edu/~mthomas/f17.705
https://edoras.sdsu.edu/~mthomas/f17.705
https://hpc.llnl.gov/training/tutorials

	Introduction
	Parallel programming models
	Parallel programming hurdles
	Heterogeneous computing

