
Software Development
Debugging and Profiling

Alexander B. Pacheco
Research Computing

June 30, 2021

http://researchcomputing.lehigh.edu

Outline

1 Introduction

2 gdb and ddd

3 gprof

4 Valgrind

5 Other Tools available on Sol & Hawk

Software Development 2 / 53

Introduction

Debugging vs Profiling

Debugging
a systematic process of spotting and fixing the number of bugs, or defects,
in a piece of software so that the software is behaving as expected
a developer activity and effective debugging is very important before
testing begins to increase the quality of the system.

Profiling
Profiling allows you to learn where your program spent its time and
which functions called which other functions while it was executing.
This information can show you which pieces of your program are slower
than you expected,
and might be candidates for rewriting to make your program execute
faster.
It can also tell you which functions are being called more or less often
than you expected.

Software Development 4 / 53

Available Tools

Open Source
1 GNU Debugger (gdb)
2 Data Display Debugger (ddd), visual frontend to gdb
3 GNU Profiler (gprof)
4 Valgrind

Commercial (some are free)
1 Intel VTune Profiler
2 NVIDIA Nsight Graphics
3 TotalView
4 Arm Forge toolsuite - ARM DDT and ARM MAP (formerly Allinea DDT

and Allinea MAP)

Software Development 5 / 53

gdb and ddd

What is GNU Debugger or gdb?

most popular debugger for UNIX systems for several languages
GNU Debugger helps you in getting information about the following:

If a core dump happened, then what statement or expression did the program
crash on?
If an error occurs while executing a function, what line of the program contains
the call to that function, and what are the parameters?
What are the values of program variables at a particular point during execution
of the program?
What is the result of a particular expression in a program?

Software Development 7 / 53

Starting gdb I

Run the command gdb <program name> to start gdb and debug program program name

[alp514.sol](1026): gdb ./md
GNU gdb (GDB) Red Hat Enterprise Linux 8.2-12.el8
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type ‘‘show copying’’ and ‘‘show warranty’’ for details.
This GDB was configured as ‘‘x86_64-redhat-linux-gnu’’.
Type ‘‘show configuration’’ for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type ‘‘help’’.
Type ‘‘apropos word’’ to search for commands related to ‘‘word’’...
Reading symbols from ./md...(no debugging symbols found)...done.
(gdb)

Software Development 8 / 53

Starting gdb II

If you do not enter the program to debug, then enter file <program name> on
the gdb prompt
[alp514.sol](1027): gdb
GNU gdb (GDB) Red Hat Enterprise Linux 8.2-12.el8
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type ‘‘show copying’’ and ‘‘show warranty’’ for details.
This GDB was configured as ‘‘x86_64-redhat-linux-gnu’’.
Type ‘‘show configuration’’ for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type ‘‘help’’.
Type ‘‘apropos word’’ to search for commands related to ‘‘word’’.
(gdb) file ./md
Reading symbols from ./md...(no debugging symbols found)...done.
(gdb)

Software Development 9 / 53

Getting Help

Type help at the prompt to see list of available commands and their
documentation
(gdb) help
List of classes of commands:

aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands

Type ‘‘help’’ followed by a class name for a list of commands in that class.
Type ‘‘help all’’ for the list of all commands.
Type ‘‘help’’ followed by command name for full documentation.
Type ‘‘apropos word’’ to search for commands related to ‘‘word’’.
Command name abbreviations are allowed if unambiguous.

Software Development 10 / 53

Running the program

To run the program, type run, followed by command line arguments
(gdb) run < md.inp
Starting program: /home/alp514/Workshop/sum2015/fortran/MolDyn/srcv3/md < md.inp
[Thread debugging using libthread_db enabled]
Using host libthread_db library ‘‘/lib64/libthread_db.so.1’’.
Input Parameters:
&MOLDYN
NATOM=4000 ,
NPARTDIM=10 ,
NSTEP=10 ,
TEMPK= 10.000000000000000 ,
DT= 1.0000000000000000E-003,
POT=’’lj’’,
/

Initial Average Temperature: 0.10033457E+01
Initial Scaled Average Temperature: 0.10000000E+02
Average Temperature: 1 0.99978284E+01 -0.33498311E+05
... skip ...
Average Temperature: 10 0.99497344E+01 -0.32058068E+05
Init Time: 0.012
Sim Time: 5.314
[Inferior 1 (process 488073) exited normally]

Software Development 11 / 53

How do I detect bugs?

If your program has bugs, you do not want to run the code but stop at
various times evaluating the functions, subroutine and various.
gdb provides various commands to debug your code

1 list: list the next 10 lines of the code
2 break n: insert breakpoint at line n
3 step: execute the next line of code
4 next: same as step but will not step into a function or subroutine
5 continue: run until until breakpoint or end of program
6 print var: print the value of a variable, var
7 watch var: watch the variable, var and pause the program if the value changes
8 backtrace: produces a stack trace of the function calls that lead to a seg fault
9 where: same as backtrace; you can think of this version as working even when you’re

still in the middle of the program
10 finish: runs until the current function is finished
11 delete: deletes a specified breakpoint
12 info breakpoints: shows information about all declared breakpoints

Software Development 12 / 53

Demo

Request an interactive session on Sol or start the shell terminal app on
Open OnDemand
Navigate to the directory where you have a code that you want to debug
OR
Copy the codes from my directory
Follow along - Please feel free to unmute of you have a question

Software Development 13 / 53

ddd

ddd: GNU DDD is a graphical front-end for command-line debuggers such
as GDB, DBX, WDB, Ladebug, JDB, XDB, the Perl debugger, the bash
debugger bashdb, the GNU Make debugger remake, or the Python
debugger pydb.
load the ddd: module load ddd

run the command ddd or ddd <program name>

Software Development 14 / 53

gprof

GNU Profiler: gprof

Gprof is a free profiler from GNU
simple way to analyze runtime behaviour of an application
(low overhead, collect various meaningful insights)
determine where most of the execution time is spent
locate code regions suited for optimization
analyzes connections between individual functions
helps in understanding code and suggests elimination of expensive function calls
part of GNU Binutils and supported by various compilers
available as open-source, almost everywhere
works for C/C++, and Fortran

Software Development 16 / 53

How it works I

Compile and link source code with the option -pg

[alp514.sol](1069): make all
gfortran -g -pg -c precision.f90
gfortran -g -pg -c param.f90
gfortran -g -pg -c potential.f90
gfortran -g -pg -c md.f90
gfortran -g -pg -c initialize.f90
gfortran -g -pg -c linearmom.f90
gfortran -g -pg -c verlet.f90
gfortran -g -pg -c get_temp.f90
gfortran -g -pg -o md precision.o param.o potential.o md.o initialize.o linearmom.o verlet.o

get_temp.o

Software Development 17 / 53

How it works II

Run the code (use shorter representative input)
[alp514.sol](1071): ./md < md.inp
Input Parameters:
&MOLDYN
NATOM=4000 ,
NPARTDIM=10 ,
NSTEP=5 ,
TEMPK= 10.000000000000000 ,
DT= 1.0000000000000000E-003,
POT=’’lj’’,
/

Initial Average Temperature: 0.10090031E+01
Initial Scaled Average Temperature: 0.10000000E+02
Average Temperature: 1 0.99978149E+01 -0.33498234E+05
Average Temperature: 2 0.99934140E+01 -0.33458772E+05
Average Temperature: 3 0.99889220E+01 -0.33392393E+05
Average Temperature: 4 0.99842784E+01 -0.33298190E+05
Average Temperature: 5 0.99794196E+01 -0.33174874E+05
Init Time: 0.012
Sim Time: 15.380

Software Development 18 / 53

How it works III

The Flat Profile shows how much time is spent in each function and how
often each function was called
[alp514.sol](1072): gprof --flat-profile ./md
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
62.64 1.54 1.54 5 0.31 0.48 verlet_
28.47 2.24 0.70 39990000 0.00 0.00 __potential_MOD_lennard_jones
3.66 2.33 0.09 39990000 0.00 0.00 __potential_MOD_dvdr_lj
3.46 2.42 0.09 39990000 0.00 0.00 __potential_MOD_pot_lj
0.81 2.44 0.02 __potential_MOD_dvdr_mp
0.81 2.46 0.02 __potential_MOD_morse
0.20 2.46 0.01 __potential_MOD_pot_mp
0.00 2.46 0.00 12000 0.00 0.00 main
0.00 2.46 0.00 7 0.00 0.00 get_temp_
0.00 2.46 0.00 6 0.00 0.00 linearmom_
0.00 2.46 0.00 1 0.00 2.42 MAIN__
0.00 2.46 0.00 1 0.00 0.00 initialize_

Software Development 19 / 53

How it works IV

The Call Graph shows which functions called each other and how many
times.
[alp514.sol](1073): gprof --graph ./md

Call graph (explanation follows)

granularity: each sample hit covers 2 byte(s) for 0.41% of 2.46 seconds

index % time self children called name
1.54 0.88 5/5 MAIN__ <cycle 1> [3]

[2] 98.2 1.54 0.88 5 verlet_ [2]
0.70 0.18 39990000/39990000 __potential_MOD_lennard_jones [4]

1 main <cycle 1> [10]

[3] 98.2 0.00 2.42 1 MAIN__ <cycle 1> [3]
1.54 0.88 5/5 verlet_ [2]
0.00 0.00 7/7 get_temp_ [11]
0.00 0.00 6/6 linearmom_ [12]

1 initialize_ <cycle 1> [13]

0.70 0.18 39990000/39990000 verlet_ [2]
[4] 35.6 0.70 0.18 39990000 __potential_MOD_lennard_jones [4]

0.09 0.00 39990000/39990000 __potential_MOD_dvdr_lj [5]
0.09 0.00 39990000/39990000 __potential_MOD_pot_lj [6]

Software Development 20 / 53

How it works V

0.09 0.00 39990000/39990000 __potential_MOD_lennard_jones [4]

[5] 3.7 0.09 0.00 39990000 __potential_MOD_dvdr_lj [5]

0.09 0.00 39990000/39990000 __potential_MOD_lennard_jones [4]
[6] 3.5 0.09 0.00 39990000 __potential_MOD_pot_lj [6]

<spontaneous>
[7] 0.8 0.02 0.00 __potential_MOD_dvdr_mp [7]

<spontaneous>
[8] 0.8 0.02 0.00 __potential_MOD_morse [8]

<spontaneous>
[9] 0.2 0.01 0.00 __potential_MOD_pot_mp [9]

12000 initialize_ <cycle 1> [13]
[10] 0.0 0.00 0.00 12000 main <cycle 1> [10]

1 MAIN__ <cycle 1> [3]

0.00 0.00 7/7 MAIN__ <cycle 1> [3]
[11] 0.0 0.00 0.00 7 get_temp_ [11]

0.00 0.00 6/6 MAIN__ <cycle 1> [3]
[12] 0.0 0.00 0.00 6 linearmom_ [12]

Software Development 21 / 53

How it works VI

1 MAIN__ <cycle 1> [3]

[13] 0.0 0.00 0.00 1 initialize_ <cycle 1> [13]
12000 main <cycle 1> [10]

Gprof can even annotate your source code. (Add option -g at compile
time.)
[alp514.sol](1082): gprof --annotated-source ./fib
*** File /home/alp514/Workshop/sum2015/fortran/Solution/fibonacci.f90:

1 -> program fibonacci

implicit none
integer, parameter :: dp = selected_real_kind(15)
integer :: i, n, fib0, fib1, fib

print *, ‘‘Enter the Fibonacci number’’
read *, n

fib0 = 0
fib1 = 1

print *, ‘‘n, f(n)’’

Software Development 22 / 53

How it works VII

! 0 + 1 + 2 + ... + n

open(10, file=’’fib.dat’’)
do i = 2, n

fib = fib1 + fib0
write(10, *) i, fib
fib0 = fib1
fib1 = fib

end do

-> end program fibonacci

Top 10 Lines:

Line Count

1 1

Execution Summary:

2 Executable lines in this file

Software Development 23 / 53

How it works VIII

2 Lines executed
100.00 Percent of the file executed

1 Total number of line executions
0.50 Average executions per line

Software Development 24 / 53

Valgrind

Valgrind

Valgrind is an instrumentation framework for building dynamic analysis
tools.
There are Valgrind tools that can automatically detect many memory
management and threading bugs, and profile your programs in detail.
The Valgrind distribution currently includes seven production-quality
tools:

1 a memory error detector,
2 two thread error detectors,
3 a cache and branch-prediction profiler,
4 a call-graph generating cache and branch-prediction profiler, and
5 two different heap profilers.

Software Development 26 / 53

Why use Valgrind?

can automatically detect many memory management and threading bugs
can perform very detailed profiling to help find bottlenecks in your
programs
uses dynamic binary instrumentation, so you don’t need to modify,
recompile or relink your applications
a debugging and profiling system for large, complex programs
suitable for any type of software
works with programs written in any language

used on programs written partly or entirely in C, C++, Java, Perl, Python,
assembly code, Fortran, Ada, and many others

can even be used on programs for which you don’t have the source code

Software Development 27 / 53

Memory Leak I

a type of resource leak that occurs when a computer program incorrectly
manages memory allocations
can also occur when an object is stored in memory but cannot be
accessed by the running code
has symptoms similar to a number of other problems and generally can
only be diagnosed by a programmer with access to the programs’ source
code
are often the cause of or a contributing factor to software aging

software aging refers to all software’s tendency to fail, or cause a system failure
after running continuously for a certain time, or because of ongoing changes in
systems surrounding the software

reduces the performance of the computer by reducing the amount of
available memory
may not be serious or even detectable by normal means
memory leak in a program that only runs for a short time may not be
noticed and is rarely serious

Software Development 28 / 53

Memory Leak II

Much more serious leaks include those:
where the program runs for an extended time and consumes additional memory
over time, such as background tasks on servers, but especially in embedded
devices which may be left running for many years
where new memory is allocated frequently for one-time tasks, such as when
rendering the frames of a computer game or animated video
where the program can request memory — such as shared memory — that is not
released, even when the program terminates
where memory is very limited, such as in an embedded system or portable device,
or where the program requires a very large amount of memory to begin with,
leaving little margin for leakage
where the leak occurs within the operating system or memory manager
when a system device driver causes the leak
running on an operating system that does not automatically release memory on
program termination.

Software Development 29 / 53

Using Valgrind

Usage: valgrind [valgrind-options] <program-name> [program-options]

[2021-06-25 10:35.44] ~/Workshop/2021HPC/debugging
[alp514.pavo5](1118): cat memleak.c
#include <stdlib.h>

void foo(void) {
int* x;
x = malloc(10 * sizeof(int));
x[10] = 0; // heap block overrun
return; // x not freed

}

int main(void) {
foo();
return 0;

}

Compile with debug symbols enabled i.e. add -g flag and run using
default option.
[2021-06-25 10:35.50] ~/Workshop/2021HPC/debugging
[alp514.pavo5](1119): gcc -g -o memleak memleak.c
[2021-06-25 10:36.02] ~/Workshop/2021HPC/debugging
[alp514.pavo5](1120): valgrind ./memleak

Software Development 30 / 53

Interpreting Output I

All lines are prepended with ==ProcessID==

Starts with a banner that displays version and command run
==63157== Memcheck, a memory error detector
==63157== Copyright (C) 2002-2017, and GNU GPL’d, by Julian Seward et al.
==63157== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==63157== Command: ./memleak

If you code generates regular output you should see that here (not in this
example)
valgrind next reports a Invalid write i.e. writing to memory location that is
not owned by the code
==63157== Invalid write of size 4
==63157== at 0x401144: foo (memleak.c:6)
==63157== by 0x401155: main (memleak.c:11)
==63157== Address 0x5206068 is 0 bytes after a block of size 40 alloc’d
==63157== at 0x4C34F47: malloc (vg_replace_malloc.c:309)
==63157== by 0x401137: foo (memleak.c:5)
==63157== by 0x401155: main (memleak.c:11)

Software Development 31 / 53

Interpreting Output II

Lastly, valgrind checks for any memory that was allocated and never
deleted, and prints a report on this memory in use at exit
If a block of memory is both in use at exit and there is no pointer to it, we
have a memory leak: memory that the programcould not possibly delete
==63157== HEAP SUMMARY:
==63157== in use at exit: 40 bytes in 1 blocks
==63157== total heap usage: 1 allocs, 0 frees, 40 bytes allocated
==63157==
==63157== LEAK SUMMARY:
==63157== definitely lost: 40 bytes in 1 blocks
==63157== indirectly lost: 0 bytes in 0 blocks
==63157== possibly lost: 0 bytes in 0 blocks
==63157== still reachable: 0 bytes in 0 blocks
==63157== suppressed: 0 bytes in 0 blocks
==63157== Rerun with --leak-check=full to see details of leaked memory
==63157==
==63157== For lists of detected and suppressed errors, rerun with: -s
==63157== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Output if there is no memory leak

Software Development 32 / 53

Interpreting Output III

[2021-06-25 11:00.13] ~/Workshop/2021HPC/debugging
[alp514.pavo5](1148): cat memleak3.f90
program memleak

implicit none

call foo()

contains

subroutine foo
integer, dimension(:), pointer :: x

allocate(x(10))

x(10) = 0 ! fixed heap block overrun
deallocate(x) ! x is deallocated freeing memory
return

end subroutine foo

end program memleak
[2021-06-25 11:00.51] ~/Workshop/2021HPC/debugging
[alp514.pavo5](1149): valgrind ./memleakf3
==63495== Memcheck, a memory error detector
==63495== Copyright (C) 2002-2017, and GNU GPL’d, by Julian Seward et al.

Software Development 33 / 53

Interpreting Output IV

==63495== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info
==63495== Command: ./memleakf3
==63495==
==63495==
==63495== HEAP SUMMARY:
==63495== in use at exit: 0 bytes in 0 blocks
==63495== total heap usage: 22 allocs, 22 frees, 13,560 bytes allocated
==63495==
==63495== All heap blocks were freed -- no leaks are possible
==63495==
==63495== For lists of detected and suppressed errors, rerun with: -s
==63495== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

Software Development 34 / 53

Cachegrind I

Cachegrind simulates how your program interacts with a machine’s cache
hierarchy and (optionally) branch predictor.
It simulates a machine with independent first-level instruction and data
caches (I1 and D1), backed by a unified second-level cache (L2).
Cachegrind gathers the following statistics

I cache reads (Ir, which equals the number of instructions executed), I1 cache
read misses (I1mr) and LL cache instruction read misses (ILmr).
D cache reads (Dr, which equals the number of memory reads), D1 cache read
misses (D1mr), and LL cache data read misses (DLmr).
D cache writes (Dw, which equals the number of memory writes), D1 cache write
misses (D1mw), and LL cache data write misses (DLmw).
Conditional branches executed (Bc) and conditional branches mispredicted
(Bcm).
Indirect branches executed (Bi) and indirect branches mispredicted (Bim).

run Cachegrind to gather the profiling information, and
Usage: valgrind --tool=cachegrind <program name> <program options>

Software Development 35 / 53

Cachegrind II

[alp514.sol](1084): valgrind --tool=cachegrind ./md
==2684769== Cachegrind, a cache and branch-prediction profiler
==2684769== Copyright (C) 2002-2017, and GNU GPL’d, by Nicholas Nethercote et al.
==2684769== Using Valgrind-3.16.0 and LibVEX; rerun with -h for copyright info
==2684769== Command: ./md
==2684769==
--2684769-- warning: L3 cache found, using its data for the LL simulation.
--2684769-- warning: specified LL cache: line_size 64 assoc 20 total_size 26,214,400
--2684769-- warning: simulated LL cache: line_size 64 assoc 25 total_size 26,214,400
Initial Average Temperature: 9.97340091E-01
Initial Scaled Average Temperature: 1.00000000E+01
Average Temperature: 1 9.99780302E+00 -3.34981556E+04
Average Temperature: 2 9.99338410E+00 -3.34585091E+04
Average Temperature: 3 9.98888351E+00 -3.33918970E+04
Average Temperature: 4 9.98423690E+00 -3.32974444E+04
Average Temperature: 5 9.97937661E+00 -3.31738710E+04
Average Temperature: 6 9.97423159E+00 -3.30194709E+04
Average Temperature: 7 9.96872615E+00 -3.28320847E+04
Average Temperature: 8 9.96277887E+00 -3.26090649E+04
Average Temperature: 9 9.95630149E+00 -3.23472350E+04
Average Temperature: 10 9.94919802E+00 -3.20428429E+04
==2684769==
==2684769== Process terminating with default action of signal 27 (SIGPROF)
==2684769== at 0x5977A63: __open_nocancel (in /usr/lib64/libc-2.28.so)
==2684769== by 0x5983FCF: write_gmon (in /usr/lib64/libc-2.28.so)
==2684769== by 0x59847CD: _mcleanup (in /usr/lib64/libc-2.28.so)
==2684769== by 0x58BEF8B: __run_exit_handlers (in /usr/lib64/libc-2.28.so)
==2684769== by 0x58BF0BF: exit (in /usr/lib64/libc-2.28.so)
==2684769== by 0x58A87B9: (below main) (in /usr/lib64/libc-2.28.so)
==2684769==
==2684769== I refs: 37,383,926,147
==2684769== I1 misses: 3,704,219
==2684769== LLi misses: 2,214
==2684769== I1 miss rate: 0.01%
==2684769== LLi miss rate: 0.00%
==2684769==
==2684769== D refs: 13,437,341,766 (11,266,871,670 rd + 2,170,470,096 wr)

Software Development 36 / 53

Cachegrind III

==2684769== D1 misses: 58,568,835 (58,405,295 rd + 163,540 wr)
==2684769== LLd misses: 16,927 (4,603 rd + 12,324 wr)
==2684769== D1 miss rate: 0.4% (0.5% + 0.0%)
==2684769== LLd miss rate: 0.0% (0.0% + 0.0%)
==2684769==
==2684769== LL refs: 62,273,054 (62,109,514 rd + 163,540 wr)
==2684769== LL misses: 19,141 (6,817 rd + 12,324 wr)
==2684769== LL miss rate: 0.0% (0.0% + 0.0%)
Profiling timer expired

run cg_annotate to get a detailed presentation of that information
[alp514.sol](1087): cg_annotate cachegrind.out.2684769
--
I1 cache: 32768 B, 64 B, 8-way associative
D1 cache: 32768 B, 64 B, 8-way associative
LL cache: 26214400 B, 64 B, 25-way associative
Command: ./md
Data file: cachegrind.out.2684769
Events recorded: Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
Events shown: Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
Event sort order: Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
Thresholds: 0.1 100 100 100 100 100 100 100 100
Include dirs:
User annotated:
Auto-annotation: on

--
Ir I1mr ILmr Dr D1mr DLmr Dw D1mw

DLmw
--
37,383,926,147 (100.0%) 3,704,219 (100.0%) 2,214 (100.0%) 11,266,871,670 (100.0%) 58,405,295 (100.0%) 4,603 (100.0%) 2,170,470,096 (100.0%) 163,540 (1

00.0%) 12,324 (100.0%) PROGRAM TOTALS

--

Software Development 37 / 53

Cachegrind IV

Ir I1mr ILmr Dr D1mr DLmr Dw D1mw
DLmw file:function

--
30,598,675,512 (81.85%) 136,605 (3.69%) 99 (4.47%) 10,490,989,557 (93.11%) 58,339,260 (99.89%) 2 (0.04%) 2,082,046,072 (95.93%) 157,945 (96.

58%) 10,501 (85.21%) /home/alp514/Workshop/2021HPC/fortran/MolDyn/orig/md-orig.f90:MAIN__
4,318,920,000 (11.55%) 20 (0.00%) 2 (0.09%) 239,940,000 (2.13%) 0 0 0 0

0 ???:lround
1,599,600,000 (4.28%) 10 (0.00%) 1 (0.05%) 79,980,000 (0.71%) 0 0 0 0

0 ???:__powidf2
506,857,492 (1.36%) 1,789,425 (48.31%) 546 (24.66%) 374,811,801 (3.33%) 18,345 (0.03%) 32 (0.70%) 30,294,235 (1.40%) 2,174 (1.

33%) 294 (2.39%) ???:???
109,423,825 (0.29%) 727,410 (19.64%) 106 (4.79%) 21,821,524 (0.19%) 222 (0.00%) 10 (0.22%) 13,433,163 (0.62%) 150 (0.

09%) 6 (0.05%) ???:__printf_fp_l
54,403,658 (0.15%) 215,709 (5.82%) 68 (3.07%) 14,393,152 (0.13%) 150 (0.00%) 4 (0.09%) 8,715,024 (0.40%) 150 (0.

09%) 1 (0.01%) ???:printf_positional
37,589,527 (0.10%) 9,115 (0.25%) 6 (0.27%) 13,124,792 (0.12%) 0 0 6,032,456 (0.28%) 11 (0.

01%) 1 (0.01%) ???:hack_digit

--
-- Auto-annotated source: /home/alp514/Workshop/2021HPC/fortran/MolDyn/orig/md-orig.f90
--
Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw

5 (0.00%) 1 (0.00%) 1 (0.05%) 0 0 0 3 (0.00%) 0 0
program md

... skipping the rest ..

--
Ir I1mr ILmr Dr D1mr DLmr Dw D1mw

DLmw
--
30,599,156,508 (81.85%) 136,613 (3.69%) 104 (4.70%) 10,491,154,555 (93.12%) 58,339,263 (99.89%) 2 (0.04%) 2,082,150,409 (95.93%) 157,945 (96.58%) 1

0,501 (85.21%) events annotated

Software Development 38 / 53

Callgrind I

Callgrind is a profiling tool that records the call history among functions
in a program’s run as a call-graph.
By default, the collected data consists of the number of instructions
executed, their relationship to source lines, the caller/callee relationship
between functions, and the numbers of such calls.
Optionally, cache simulation and/or branch prediction (similar to
Cachegrind) can produce further information about the runtime behavior
of an application.
The profile data is written out to a file at program termination. For
presentation of the data, and interactive control of the profiling, two
command line tools are provided:
callgrind_annotate: reads in the profile data, and prints a sorted lists of
functions, optionally with source annotation.
Use qcachegrind for graphical visualization of the data to navigate the large
amount of data that Callgrind produces.

Software Development 39 / 53

Callgrind II

callgrind_control:enables you to interactively observe and control the status
of a program currently running under Callgrind’s control, without
stopping the program. You can get statistics information as well as the
current stack trace, and you can request zeroing of counters or dumping
of profile data.
To start a profile run for a program, execute:
valgrind --tool=callgrind [callgrind options] your-program [program options]

[alp514.sol](1003): valgrind --tool=callgrind ./md
==3076654== Callgrind, a call-graph generating cache profiler
==3076654== Copyright (C) 2002-2017, and GNU GPL’d, by Josef Weidendorfer et al.
==3076654== Using Valgrind-3.16.0 and LibVEX; rerun with -h for copyright info
==3076654== Command: ./md
==3076654==
==3076654== For interactive control, run ’callgrind_control -h’.
Initial Average Temperature: 1.00606866E+00
Initial Scaled Average Temperature: 1.00000000E+01
Average Temperature: 1 9.99780325E+00 -3.34981611E+04
Average Temperature: 2 9.99338074E+00 -3.34584985E+04
Average Temperature: 3 9.98886821E+00 -3.33917992E+04
Average Temperature: 4 9.98420035E+00 -3.32971328E+04
Average Temperature: 5 9.97930766E+00 -3.31731528E+04
Average Temperature: 6 9.97411590E+00 -3.30180681E+04
Average Temperature: 7 9.96854463E+00 -3.28296057E+04
Average Temperature: 8 9.96250549E+00 -3.26049633E+04
Average Temperature: 9 9.95590058E+00 -3.23407523E+04
Average Temperature: 10 9.94862103E+00 -3.20329313E+04
==3076654==
==3076654== Process terminating with default action of signal 27 (SIGPROF)

Software Development 40 / 53

Callgrind III

==3076654== at 0x5977A63: __open_nocancel (in /usr/lib64/libc-2.28.so)
==3076654== by 0x5983FCF: write_gmon (in /usr/lib64/libc-2.28.so)
==3076654== by 0x59847CD: _mcleanup (in /usr/lib64/libc-2.28.so)
==3076654== by 0x58BEF8B: __run_exit_handlers (in /usr/lib64/libc-2.28.so)
==3076654== by 0x58BF0BF: exit (in /usr/lib64/libc-2.28.so)
==3076654== by 0x58A87B9: (below main) (in /usr/lib64/libc-2.28.so)
==3076654==
==3076654== Events : Ir
==3076654== Collected : 37380887421
==3076654==
==3076654== I refs: 37,380,887,421
Profiling timer expired

To generate a function-by-function summary from the profile data file, use
callgrind_annotate [options] callgrind.out.<pid>

Software Development 41 / 53

Callgrind IV

[alp514.sol](1004): callgrind_annotate callgrind.out.3076654
--
Profile data file ’callgrind.out.3076654’ (creator: callgrind-3.16.0)
--
I1 cache:
D1 cache:
LL cache:
Timerange: Basic block 0 - 3237167226
Trigger: Program termination
Profiled target: ./md (PID 3076654, part 1)
Events recorded: Ir
Events shown: Ir
Event sort order: Ir
Thresholds: 99
Include dirs:
User annotated:
Auto-annotation: on

--
Ir
--
37,380,595,563 (100.0%) PROGRAM TOTALS

--
Ir file:function
--
30,918,860,230 (82.71%) md-orig.f90:MAIN__ [/home/alp514/Workshop/2021HPC/fortran/MolDyn/orig/md]
4,318,920,000 (11.55%) ???:lround [/usr/lib64/libm-2.28.so]
1,599,600,000 (4.28%) ???:__powidf2 [/usr/lib64/libgcc_s-8-20191121.so.1]

107,526,539 (0.29%) ???:__printf_fp_l [/usr/lib64/libc-2.28.so]
54,139,536 (0.14%) ???:printf_positional [/usr/lib64/libc-2.28.so]
37,644,281 (0.10%) ???:hack_digit [/usr/lib64/libc-2.28.so]

--
-- Auto-annotated source: md-orig.f90
--
Ir

Software Development 42 / 53

Callgrind V

6 (0.00%) program md
51 (0.00%) => ???:mcount (1x)
.
. ! Molecular Dynamics code for equilibration of Liquid Argon

... skipping the rest ...

--
Ir
--
30,919,372,586 (82.72%) events annotated

Software Development 43 / 53

Other Tools available on Sol & Hawk

Intel OneAPI I

oneAPI is an open standard of a unified application programming
interface intended to be used across different compute accelerator
(coprocessor) architectures.
It is intended to eliminate the need for developers to maintain separate
code bases, multiple programming languages, and different tools and
workflows for each architecture.
Intel has released production quality oneAPI toolkits that implement the
specification and add migration, analysis, and debug tools.
These include the Intel C++ compiler, Intel Fortran compiler, VTune and
multiple performance libraries.
The Intel OneAPI toolkits are available at no charge at
https://software.intel.com/.
Download the Intel OneAPI Base Toolkit.
If you need access to Fortran Compiler or MPI libraries, download the
HPC Toolkit also.

Software Development 45 / 53

https://software.intel.com/

Intel OneAPI II

On Sol, Intel OneAPI 2021.02 is available at /share/Apps/intel-oneapi.
To put Intel OneAPI in your path, run the command
source /share/Apps/intel-oneapi/setvars.sh

Tools available for Debugging and Profiling
1 Intel VTune Profiling (vtune, vtune-gui): performance analysis tool for serial and

multithreaded applications
2 Intel Advisor (advixe-cl, advixe-gui): a set of tools to help ensure Fortran, C,

C++, OpenCL, and Data Parallel C++ (DPC++) applications realize full
performance potential on modern processors.

3 Intel Inspector (inspxe-cl,inspxe-gui): a dynamic memory and threading error
checking tool for users developing serial and multithreaded applications on
Windows and Linux operating systems.

4 Intel Trace Analyzer and Collector (traceanalyzer): a graphical tool for
understanding MPI application behavior, quickly finding bottlenecks, improving
correctness, and achieving high performance for parallel cluster applications
based on Intel architecture.

Software Development 46 / 53

Intel VTune Profiler

Use Intel VTune Profiler to locate or determine:
1 The most time-consuming (hot) functions in your application and/or on the

whole system
2 Sections of code that do not effectively utilize available processor time
3 The best sections of code to optimize for sequential performance and for threaded

performance
4 Synchronization objects that affect the application performance
5 Whether, where, and why your application spends time on input/output

operations
6 Whether your application is CPU or GPU bound and how effectively it offloads

code to the GPU
7 The performance impact of different synchronization methods, different numbers

of threads, or different algorithms
8 Thread activity and transitions
9 Hardware-related issues in your code such as data sharing, cache misses, branch

misprediction, and others

User Guide

Software Development 47 / 53

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top.html

Intel Advisor

Intel Advisor enables you to analyze your code from the following
perspectives:

1 Discover where vectorization will pay off the most using Vectorization and Code
Insights perspective.

2 Identify CPU-imposed performance ceilings using CPU / Memory Roofline
perspective.

3 Identify high-impact opportunities to offload to a GPU using Offload Modeling
perspective.

4 Identify GPU performance bottlenecks using GPU Roofline Insights perspective.
5 Prototype threading design options using Threading perspective.

Get Started Guide

Software Development 48 / 53

https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top.html

Intel Inspector

Intel Inspector offers:
1 Preset analysis configurations (with some configurable settings), as well as the

ability to create custom analysis configurations to help you control analysis scope
and cost.

2 Visibility into individual problems, problem occurrences, and call stack
information, with problem prioritization and filtering by inclusion and exclusion
to help you focus on items that require your attention.

3 Problem suppressions support to help you focus on only those issues that require
your attention, including the ability to:

Create suppression rules based on stacks
Convert third-party suppression files to the Intel Inspector suppression file
format
Create and edit suppression files in a text editor

4 Interactive debugging capability so you can investigate problems more deeply
during analysis

5 A wealth of reported memory errors, including on-demand memory leak detection
6 Memory growth measurement to help ensure your application uses no more

memory than expected
7 Data race, deadlock, lock hierarchy violation, and cross-thread stack access error

detection, including error detection on the stack

Get Started Guide

Software Development 49 / 53

https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-inspector/top.html

Intel Trace Analyzer and Collector

Use Intel Trace Analyzer and Collector to:
1 Evaluate profiling statistics and load balancing.
2 Learn about communication patterns, parameters, and performance data.
3 Identify communication hotspots.
4 Decrease time to solution and increase application efficiency.

Get Started Guide

Software Development 50 / 53

https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-itac/top.html

NVIDIA Visual Profiler I

a cross-platform performance profiling tool that delivers developers vital
feedback for optimizing CUDA C/C++ applications
Focus on the information that matters

Quickly identify potential performance bottleneck issues in your applications
using highly configurable tables and graphical views

Automated performance analysis
Perform automated analysis of your application to identify performance
bottlenecks and get optimization suggestions that can be used to improve
performance

Unified CPU and GPU Timeline
View CUDA activity occurring on both CPU and GPU in a unified time line,
including CUDA API calls, memory transfers and CUDA launches.

CUDA API trace
View all memory transfers, kernel launches, and other API functions on the same
timeline

Drill down to raw data
Gain low-level insights by looking at performance metrics collected directly from
GPU hardware counters and software instrumentation.

Software Development 51 / 53

NVIDIA Visual Profiler II

Compare results across multiple sessions
Confirm performance improvements by comparing against previous sessions

Analyze data collected from remote systems
Use the command line profiler using environment variables to collect data from
multiple systems and analyze the results in Visual Profiler

CUDA Dynamic Parallelism
View timeline for applications that use CUDA Dynamic Parallelism including
both host-launched and device-launched kernels and the parent-child relationship
between kernels.

Guided Application Analysis
Use the guided analysis mode has to get step-by-step analysis and optimization
guidance. The analysis results now include graphical visualizations to more
clearly indicate the optimization opportunities.

Power, thermal, and clock profiling
Observe how GPU power, thermal, and clock values vary during application
execution

Included in CUDA Toolkit

Software Development 52 / 53

NVIDIA Nsight Systems

a low overhead performance analysis tool designed to provide nsights
developers need to optimize their software.
Unbiased activity data is visualized within the tool to help users
investigate bottlenecks, avoid inferring false-positives, and pursue
optimizations with higher probability of performance gains.
Users will be able to identify issues, such as GPU starvation, unnecessary
GPU synchronization, insufficient CPU parallelizing, and even
unexpectedly expensive algorithms across the CPUs and GPUs of their
target platform.
NVIDIA Nsight Systems can even provide valuable insight into the
behaviors and load of deep learning frameworks such as PyTorch and
TensorFlow; allowing users to tune their models and parameters to
increase overall single or multi-GPU utilization.
Included in the NVIDIA HPC SDK
User Guide

Software Development 53 / 53

https://docs.nvidia.com/nsight-systems/UserGuide/index.html

	Introduction
	gdb and ddd
	gprof
	Valgrind
	Other Tools available on Sol & Hawk

