class: center, middle, inverse, title-slide # Bring/Build Your Own Software ## for Sol & Hawk ### Research Computing ###
https://researchcomputing.lehigh.edu
--- class: myback # Audience? * HPC users or any \*nix users who want to install software and do not have admin or root priviliges * If you want to install software and end up emailing HPC staff with the following content <pre class="wrap"> I need somehow to have swig installed sudo apt-get install libeigen3-dev swig I believe not only I'm not a sudoer but apt-get is not being recognized. So, little help of yours is appreciated ;)) </pre> <pre class="wrap"> Also, one of the installation instructions I'm following says to run the command: sudo yum install build-essential git subversion dpkg-dev make g++ gcc binutils libx11-dev libxpm-dev libxft-dev libxext-dev However, I don't have permission to run sudo, and if I run it without sudo, I get the output you need to be root to perform this command. What do I do? </pre> ![:scale 50%](assets/img/mpierror.png) ![:scale 100%](assets/img/mpierror2.png) * Want to learn how to use apt/yum/dnf/zypper? ===> **THIS SEMINAR IS NOT FOR YOU** * This seminar is for building applications from source code using a compiler. --- # Outline * Basics: Compilers and Compiler options * Make & CMake * Autoconf Tools * SPACK * Singularity - Building containers (you are expected to be familiar with package managers for the distribution used to build a container) - Running containers --- class: inverse, middle # Basics: Compilers and Compiler options --- # Compilers * Various versions of compilers installed on Sol. * Open Source: GNU Compiler (also called gcc even though gcc is the c compiler) - 8.3.1 (system default), and 9.3.0. * Commercial: Only two seats of each. - Intel Compiler: 19.0.3 and 20.0.2 - nVIDIA HPC SDK<sup>a</sup>: 20.9 * _We are licensed to install any available version_. * On Sol & Hawk, all except gcc 8.3.1 are available via the module environment. .center[ | Language | GNU | Intel | nVIDIA HPC SDK <sup>b</sup> | |:--------:|:----:|:-----:|::-------------:| | Fortran | `gfortran` | `ifort` | `nvfortran` | | C | `gcc` | `icc` | `nvc`<sup>c</sup> | | C++ | `g++` | `icpc` | `nvc++` | ] .footnote[ a. includes CUDA for compiling on GPUs. b. NVIDIA HPC SDK replaces the old PGI compilers. `pgfortran`, `pgcc` and `pgc++` are available for now but you should change your commands to the new `nv` commands. c. `nvcc` is the cuda compiler while `nvc` is the C compiler. ] --- # Compiling Code * Usage: `<compiler> <options> <source code>` * Common Compiler options or flags: - `-o myexec`: compile code and create an executable `myexec`. If this option is not given, then a default `a.out` is created. - `-l{libname}`: link compiled code to a library called `libname`. e.g. to use lapack libraries, add `-llapack` as a compiler flag. - `-L{directory path}`: directory to search for libraries. e.g. `-L/usr/lib64 -llapack` will search for lapack libraries in `/usr/lib64`. - `-I{directory path}`: directory to search for include files and fortran modules. - `-On`: optmize code to level n where n=0,1,2,3. - `-g`: generate a level of debugging information in the object file (-On supercedes -g). - `-mcmodel=mem_model`: tells the compiler to use a specific memory model to generate code and store data where mem\_model=small, medium or large. - `-fpic/-fPIC`: generate position independent code (PIC) suitable for use in a shared library. * See [HPC Documentation](https://confluence.cc.lehigh.edu/display/hpc/Compilers#Compilers-CompilerFlags) --- # Compilers for OpenMP, OpenACC & TBB * OpenMP support is built-in. * OpenACC support is available only in NVIDIA HPC SDK and GNU compiler suite. * Intel Compiler supports OpenMP 5.0 capable of GPU offloading | Compiler | OpenMP Flag | OpenACC Flag | TBB Flag | |:---:|:---:|:---:|:---:| | GNU | `-fopenmp` | `-fopenacc` | `-L$TBBROOT/lib/intel64_lin/gcc4.4 -ltbb` | | Intel | `-qopenmp` | | `-L$TBBROOT/lib/intel64_lin/gcc4.4 -ltbb` | | NVIDIA HPC SDK | `-mp` | `-acc` | ` ` | * TBB is available as part of Intel Compiler suite. * `$TBBROOT` depends on the Intel Compiler Suite you want to use. --- <pre class="wrap"> [2021-03-09 10:12.17] ~/Workshop/sum2017/calc_pi/solution [alp514.hawk-b624](1044): ls calcpi-omp-acc.dat compare.dat Makefile_c Makefile_f90 pi_acc.c pi_acc.f90 pi_omp1.c pi_omp1.f90 pi_omp.c pi_omp.f90 pi_serial.c pi_serial.f90 submit_omp.pbs [2021-03-09 10:12.18] ~/Workshop/sum2017/calc_pi/solution [alp514.hawk-b624](1045): nvc -o pic pi_serial.c [2021-03-09 10:12.23] ~/Workshop/sum2017/calc_pi/solution [alp514.hawk-b624](1046): nvc -acc=gpu -Minfo=accel -o pic_acc pi_acc.c main: 13, Generating copyout(sum) [if not already present] Generating copyin(step) [if not already present] 16, Generating Tesla code 17, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */ Generating reduction(+:sum) [2021-03-09 10:12.29] ~/Workshop/sum2017/calc_pi/solution [alp514.hawk-b624](1047): nvc -mp -Minfo=mp -o pic_omp pi_omp.c main: 14, Parallel region activated 16, Parallel loop activated with static block schedule 19, Barrier [2021-03-09 10:12.33] ~/Workshop/sum2017/calc_pi/solution [alp514.hawk-b624](1048): ./pic pi = 3.141592653589451 time to compute = 22.631 seconds [2021-03-09 10:12.59] ~/Workshop/sum2017/calc_pi/solution [alp514.hawk-b624](1049): ./pic_acc pi = 3.141592653589794 time to compute = 1.16009 seconds [2021-03-09 10:13.06] ~/Workshop/sum2017/calc_pi/solution [alp514.hawk-b624](1050): for i in 1 2 3 4 5 6 ; do echo OMP_NUM_THREADS=$i ; OMP_NUM_THREADS=$i ./pic_omp ; done OMP_NUM_THREADS=1 pi = 3.141592653589451 time to compute = 22.6826 seconds OMP_NUM_THREADS=2 pi = 3.141592653589563 time to compute = 11.7445 seconds OMP_NUM_THREADS=3 pi = 3.141592653589578 time to compute = 7.95672 seconds OMP_NUM_THREADS=4 pi = 3.141592653589577 time to compute = 6.10444 seconds OMP_NUM_THREADS=5 pi = 3.141592653589738 time to compute = 7.37072 seconds OMP_NUM_THREADS=6 pi = 3.141592653589770 time to compute = 6.15213 seconds [2021-03-09 10:14.48] ~/Workshop/sum2017/calc_pi/solution [alp514.hawk-b624](1051): </pre> --- # Intel Compiler Options | Flag | Description | |:----|:--------| | `-ipo` | Enables interprocedural optimization between files. | | `-ax_code_/-x_code_` | Tells the compiler to generate multiple, feature-specific auto-dispatch code paths for Intel processors if there is a performance benefit. code can be COMMON-AVX512, CORE-AVX512, CORE-AVX2, CORE-AVX-I or AVX | | `-xHost` | Tells the compiler to generate instructions for the highest instruction set available on the compilation host processor. DO NOT USE THIS OPTION | | `-fast` | Maximizes speed across the entire program. Also sets `-ipo`, `-O3`, `-no-prec-div`, `-static`, `-fp-model fast=2`, and `-xHost`. Not recommended | | `-funroll-all-loops` | Unroll all loops even if the number of iterations is uncertain when the loop is entered. | | `-mkl` | Tells the compiler to link to certain libraries in the Intel Math Kernel Library (Intel MKL) | | `-static-intel/libgcc` | Links to Intel/GNU libgcc libraries statically, use -static to link all libraries dynamically | --- # GNU Compiler Options | Flag | Description | |:----|:--------| | `-march=processor` | Generate instructions for the machine type processor . processor can be sandybridge, ivybridge, haswell, broadwell or skylake-avx512. | | `-Ofast` | Disregard strict standards compliance. `-Ofast` enables all `-O3` optimizations. It also enables optimizations that are not valid for all standard-compliant programs. It turns on `-ffast-math` and the Fortran-specific `-fstack-arrays`, unless `-fmax-stack-var-size` is specified, and `-fno-protect-parens`. | | `-funroll-all-loops` | Unroll all loops even if the number of iterations is uncertain when the loop is entered. | | `-shared`/`-static` | Links to libraries dynamically/statically | --- # NVIDIA HPC Compiler Options | Flag | Description | |:----|:--------| | `-acc` | Enable OpenACC directives. | | `-tp processor` | Specify the type(s) of the target processor(s). processor can be sandybridge-64, haswell-64, or skylake-64. | | `-mtune=processor` | Tune to processor everything applicable about the generated code, except for the ABI and the set of available instructions. processor can be sandybridge, ivybridge, haswell, broadwell or skylake-avx512. Some older programs/makefile might use -mcpu that is deprecated | | `-fast` | Generally optimal set of flags. | | `-Mipa` | Invokes interprocedural analysis and optimization. | | `-Munroll` | Controls loop unrolling. | | `-Minfo` | Prints informational messages regarding optimization and code generation to standard output as compilation proceeds.| | `-shared` | Instructs the linker to generate a shared object file. Implies `-fpi`. | | `-Bstatic` | Statically link all libraries, including the PGI runtime. | --- # Compilers for MPI Programming * MPI is a library, not a compiler, built or compiled for different compilers. | Language | Compile Command | |:--------:|:---:| | Fortran | `mpif90` | | C | `mpicc` | | C++ | `mpicxx` | * Usage: `<compiler> <options> <source code>` <pre class="wrap"> [2021-03-09 10:59.58] ~/Workshop/2018XSEDEBootCamp/MPI/Solutions [alp514.sol](1090): mpif90 -o laplacef laplace_mpi.f90 </pre> * The MPI compiler command is just a wrapper around the underlying compiler. <pre class="wrap"> [2021-03-09 11:01.59] ~/Workshop/2018XSEDEBootCamp/MPI/Solutions [alp514.sol](1095): mpicxx -show /share/Apps/intel/2020/compilers_and_libraries_2020.3.275/linux/bin/intel64/icpc -lmpicxx -lmpi -I/share/Apps/lusoft/opt/spack/linux-centos8-haswell/intel-20.0.3/mvapich2/2.3.4-wguydha/include -L/share/Apps/lusoft/opt/spack/linux-centos8-haswell/intel-20.0.3/mvapich2/2.3.4-wguydha/lib -Wl,-rpath -Wl,/share/Apps/lusoft/opt/spack/linux-centos8-haswell/intel-20.0.3/mvapich2/2.3.4-wguydha/lib </pre> --- # MPI Libraries * There are two different MPI implementations commonly used. * `MPICH`: Developed by Argonne National Laboratory. - used as a starting point for various commercial and open source MPI libraries (default MPI on Hawk). - `MVAPICH2`: Developed by D. K. Panda with support for InfiniBand, iWARP, RoCE, and Intel Omni-Path. (default MPI on Sol), - `Intel MPI`: Intel's version of MPI. __You need this for Xeon Phi MICs__, - available in cluster edition of Intel Compiler Suite. Not available at Lehigh. - `IBM MPI` for IBM BlueGene, and - `CRAY MPI` for Cray systems. * `OpenMPI`: A Free, Open Source implementation from merger of three well know MPI implementations. Can be used for commodity network as well as high speed network. - `FT-MPI` from the University of Tennessee, - `LA-MPI` from Los Alamos National Laboratory, - `LAM/MPI` from Indiana University --- # Case Study: bgc * Software available at https://sites.google.com/site/bgcsoftware/ * Download and extract source <pre> [2021-03-09 12:07.28] ~/Workshop/Make [alp514.sol](1180): wget https://sites.google.com/site/bgcsoftware/home/bgcdist1.03.tar.gz [2021-03-09 12:07.32] ~/Workshop/Make [alp514.sol](1181): tar -xzf bgcdist1.03.tar.gz [2021-03-09 12:07.45] ~/Workshop/Make </pre> * Read Manual, `bgc_manual.pdf`, specifically sec 2.1 for compilation instructions * `h5c++ -Wall -O2 -o bgc bgc_main.C bgc_func_readdata.C bgc_func_initialize.C bgc_func_mcmc.C bgc_func_write.C bgc_func_linkage.C bgc_func_ngs.C bgc_func_hdf5.C mvrandist.c -lgsl -lgslcblas` * Uses HDF5 to compile code and links to GSL libraries <pre class="wrap"> [alp514.sol](1199): h5c++ -show /usr/bin/g++ -I/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/zlib/1.2.11-ai5thdl/include -fPIC -L/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/hdf5/1.10.7-vuonnza/lib /share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/hdf5/1.10.7-vuonnza/lib/libhdf5_hl_cpp.a /share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/hdf5/1.10.7-vuonnza/lib/libhdf5_cpp.a /share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/hdf5/1.10.7-vuonnza/lib/libhdf5_hl.a /share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/hdf5/1.10.7-vuonnza/lib/libhdf5.a -L/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/zlib/1.2.11-ai5thdl/lib -lz -ldl -lm -Wl,-rpath -Wl,/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/hdf5/1.10.7-vuonnza/lib </pre> --- # Case Study: Compiling bgc <pre class="wrap"> [2021-03-09 12:15.52] ~/Workshop/Make/bgcdist [alp514.sol](1200): h5c++ -Wall -O2 -o bgc bgc_main.C bgc_func_readdata.C bgc_func_initialize.C bgc_func_mcmc.C bgc_func_write.C bgc_func_linkage.C bgc_func_ngs.C bgc_func_hdf5.C mvrandist.c -lgsl -lgslcblas /usr/bin/ld: cannot find -lgsl /usr/bin/ld: cannot find -lgslcblas collect2: error: ld returned 1 exit status </pre> -- * **We do not install software in standard locations.** * Need to add path to `libgsl.{so,a}` and `libgslcblas.{so,a}` using the `-L` flag. * Run the command `module show gsl` to find the path to the lib directory. <pre class="wrap"> [alp514.sol](1202): h5c++ -Wall -O2 -o bgc bgc_main.C bgc_func_readdata.C bgc_func_initialize.C bgc_func_mcmc.C bgc_func_write.C bgc_func_linkage.C bgc_func_ngs.C bgc_func_hdf5.C mvrandist.c -lgsl -lgslcblas -L/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/lib [alp514.sol](1203): ldd bgc linux-vdso.so.1 (0x00007ffe0cd5c000) libgsl.so.23 => /share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/lib/libgsl.so.23 (0x00007fa8b5f21000) libgslcblas.so.0 => /share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/lib/libgslcblas.so.0 (0x00007fa8b5ce5000) libz.so.1 => /lib64/libz.so.1 (0x00007fa8b5ace000) libdl.so.2 => /lib64/libdl.so.2 (0x00007fa8b58ca000) libstdc++.so.6 => /lib64/libstdc++.so.6 (0x00007fa8b5535000) libm.so.6 => /lib64/libm.so.6 (0x00007fa8b51b3000) libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007fa8b4f9b000) libc.so.6 => /lib64/libc.so.6 (0x00007fa8b4bd8000) /lib64/ld-linux-x86-64.so.2 (0x00007fa8b638f000) </pre> --- # Compilation * Two step process 1. compiler generates the object files from source code 2. linker generates the executable from the object files * Most compilers can do both steps by default * Use `-c` to suppress linking <pre class="wrap"> h5c++ -Wall -O2 -c bgc_main.C h5c++ -Wall -O2 -c bgc_func_readdata.C h5c++ -Wall -O2 -c bgc_func_initialize.C h5c++ -Wall -O2 -c bgc_func_mcmc.C h5c++ -Wall -O2 -c bgc_func_write.C h5c++ -Wall -O2 -c bgc_func_linkage.C h5c++ -Wall -O2 -c bgc_func_ngs.C h5c++ -Wall -O2 -c bgc_func_hdf5.C h5c++ -Wall -O2 -c mvrandist.c h5c++ -Wall -O2 -o bgc -lgsl -lgslcblas -L/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/lib bgc_main.o bgc_func_readdata.o bgc_func_initialize.o bgc_func_mcmc.o bgc_func_write.o bgc_func_linkage.o bgc_func_ngs.o bgc_func_hdf5.o mvrandist.o </pre> * Cumbersome for applications that have a large number of subroutines or functions * How about applications with mixed code - C, C++ and Fortran? * Make simplifies this process. --- # Best Practices * Build for 64 bit architecture by adding `-m64` * Use `-mcmodel=medium` if you have large static arrays * Intel Compiler * DO NOT USE `-fast` (at least on Sol and Hawk) * Instead use `-ipo -O3 -no-prec-div -static -fp-model fast=2` * and `-x<code>` or `-ax<code>` instead. * DO NOTE USE `-xHost`, use `-x<code>` or `-ax<code>` instead * OR optimize for all available architectures using `-axCOMMON-AVX512,CORE-AVX512,CORE-AVX2,CORE-AVX-I,AVX` * Use `-mkl` if using MKL libraries. * If you need specific option see the [MKL Link Advisor](https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl/link-line-advisor.html) * GNU Compiler * Use `-march=<processor>` to optimize for a specific processor. * GNU compiler cannot build multi-architecture binaries. * If you are building only one executable, then optimize for the lowest processor i.e. ivybridge (if you plan to use debug queue) or haswell --- class: inverse, middle # Make and Makefiles --- # What is Make? * Tool that * Controls the generation of executable and other non‐source files (libraries etc.) * Simplifies (a lot) the management of a program that has multiple source files * Variants * GNU Make * BSD Make * Microsoft nmake * Similar utilities * CMake * SCons --- # How Make works? * Two parts - Makefile * A text file that describes the dependency and specifies how source files should be compiled - `make` command * compile the program using the Makefile <pre class="wrap"> [2021-03-09 18:24.29] ~/Workshop/Make/bgcdist [alp514.sol](1014): ls bgc_func_hdf5.C bgc_func_mcmc.C bgc_func_write.C bgc_manual.pdf example Makefile Makefile.variables bgc_func_initialize.C bgc_func_ngs.C bgc.h CVS install.sh Makefile.auto mvrandist.c bgc_func_linkage.C bgc_func_readdata.C bgc_main.C estpost_h5.c install_v2.sh Makefile.obj mvrandist.h [2021-03-09 18:24.34] ~/Workshop/Make/bgcdist [alp514.sol](1016): make h5c++ -Wall -O2 -o bgc bgc_main.C bgc_func_readdata.C bgc_func_initialize.C \ bgc_func_mcmc.C bgc_func_write.C bgc_func_linkage.C bgc_func_ngs.C \ bgc_func_hdf5.C mvrandist.c \ -lgsl -lgslcblas -L/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/lib </pre> --- # Make rules and targets * A _rule_ in the makefile tells Make how to execute a series of commands in order to build a _target_ file from source files. * It also specifies a list of dependencies of the target file. <pre class="tab"> target: dependencies commands </pre> * A makefile can have multiple targets. * Specify the target you wish to update `make bgc` * Default - update the first target <pre class="tab"> [alp514.sol](1018): cat Makefile all: bgc bgc: h5c++ -Wall -O2 -o bgc bgc_main.C bgc_func_readdata.C bgc_func_initialize.C \ bgc_func_mcmc.C bgc_func_write.C bgc_func_linkage.C bgc_func_ngs.C \ bgc_func_hdf5.C mvrandist.c \ -lgsl -lgslcblas -L/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/lib </pre> * __Note__: Use the tab key, do not indent using spaces. --- # Makefile and Make * Makefile Components * Explicit rules: creates a target or re‐creates a target when any of prerequisites changes * Implicit rules: how to build a certain type of targets * Variables * Directives * How does Make process a Makefile * reads all components and makes a dependency graph * determines which targets need to be built and invokes the recipe to do so --- # Explicit Rules * Multiple rules can exist in the same Makefile * The “make” command builds the first target by default * To build other targets, one needs to specify the target name * `make <target name>` * A single rule can have multiple targets separated by space * An action (or recipe) can consist of multiple commands * They can be on multiple lines, or on the same line separated by semicolons * Wildcards can be used * By default all executed commands will be echoed on the screen * Can be suppressed by adding “@” before the commands --- # Creating a Makefile: Step 1 <pre class="tab wrap"> all: bgc bgc: h5c++ -Wall -O2 -o bgc bgc_main.o bgc_func_readdata.o bgc_func_initialize.o \ bgc_func_mcmc.o bgc_func_write.o bgc_func_linkage.o bgc_func_ngs.o \ bgc_func_hdf5.o mvrandist.o \ -I/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/include \ -lgsl -lgslcblas -L/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/lib bgc_main.o: bgc_main.C h5c++ -c -Wall -O2 bgc_main.C -I/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/include bgc_func_readdata.o: bgc_func_readdata.C h5c++ -c -Wall -O2 bgc_func_readdata.C -I/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/include bgc_func_initialize.o: bgc_func_initialize.C h5c++ -c -Wall -O2 bgc_func_initialize.C -I/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/include bgc_func_mcmc.o: bgc_func_mcmc.C h5c++ -c -Wall -O2 bgc_func_mcmc.C -I/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/include bgc_func_write.o: bgc_func_write.C h5c++ -c -Wall -O2 bgc_func_write.C -I/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/include bgc_func_linkage.o: bgc_func_linkage.C h5c++ -c -Wall -O2 bgc_func_linkage.C -I/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/include bgc_func_ngs.o: bgc_func_ngs.C h5c++ -c -Wall -O2 bgc_func_ngs.C -I/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/include bgc_func_hdf5.o: bgc_func_hdf5.C h5c++ -c -Wall -O2 bgc_func_hdf5.C -I/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/include mvrandist.o: mvrandist.c h5c++ -c -Wall -O2 mvrandist.c -I/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/include clean: rm -rf *.o bgc </pre> --- # Variables * Make permits the use if variables to prevent errors due to duplication of commands. * Standard variables used in Makefiles * CC, CXX, FC, F77, F90: variables to specify C, C++, and Fortran compilers * CFLAGS, CXXFLAGS, FCFLAGS: flags to give C, C++ and Fortran compilers * CPPFLAGS: flags to give to the C preprocessor, `-I{path to include or mod files}` * LDFLAGS: compiler flags when invoking linker. `-L{path to library}` * LIBS: list of libraries to link * In general, OBJ is used for a list of object files --- # Makefile using variables <pre class="tab wrap"> OBJ = bgc_main.o bgc_func_readdata.o bgc_func_initialize.o bgc_func_mcmc.o \ bgc_func_write.o bgc_func_linkage.o bgc_func_ngs.o bgc_func_hdf5.o mvrandist.o CXX = h5c++ CXXFLAGS = -Wall -O2 LIBS = -lgsl -lgslcblas LDFLAGS = -L/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/lib CPPFLAGS = -I/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/include EXEC = bgc all: $(EXEC) $(EXEC): $(OBJ) $(CXX) $(CXXFLAGS) $(CPPFLAGS) -o bgc $(OBJ) $(LIBS) $(LDFLAGS) bgc_main.o: bgc_main.C $(CXX) -c $(CXXFLAGS) $(CPPFLAGS) bgc_main.C bgc_func_readdata.o: bgc_func_readdata.C $(CXX) -c $(CXXFLAGS) $(CPPFLAGS) bgc_func_readdata.C bgc_func_initialize.o: bgc_func_initialize.C $(CXX) -c $(CXXFLAGS) $(CPPFLAGS) bgc_func_initialize.C bgc_func_mcmc.o: bgc_func_mcmc.C $(CXX) -c $(CXXFLAGS) $(CPPFLAGS) bgc_func_mcmc.C bgc_func_write.o: bgc_func_write.C $(CXX) -c $(CXXFLAGS) $(CPPFLAGS) bgc_func_write.C bgc_func_linkage.o: bgc_func_linkage.C $(CXX) -c $(CXXFLAGS) $(CPPFLAGS) bgc_func_linkage.C bgc_func_ngs.o: bgc_func_ngs.C $(CXX) -c $(CXXFLAGS) $(CPPFLAGS) bgc_func_ngs.C bgc_func_hdf5.o: bgc_func_hdf5.C $(CXX) -c $(CXXFLAGS) $(CPPFLAGS) bgc_func_hdf5.C mvrandist.o: mvrandist.c $(CXX) -c $(CXXFLAGS) $(CPPFLAGS) mvrandist.c clean: rm -rf $(OBJ) $(EXEC) </pre> --- # Automatics variables & Implicit rules * The values of automatic variables change every time a rule is executed * Automatic variables only have values within a rule * Most frequently used ones * $@: The name of the current target * $^: The names of all the prerequisites * $?: The names of all the prerequisites that are newer than the target * $<: The name of the first prerequisite * Implicit rule specifies how to build a certain type of targets * Similar to explicit rule but uses % in target * makes use of automatic variables <pre class="tab"> %.o: %.c command </pre> --- # Makefile using Implicit rules <pre class="tab wrap"> OBJ = bgc_main.o bgc_func_readdata.o bgc_func_initialize.o bgc_func_mcmc.o \ bgc_func_write.o bgc_func_linkage.o bgc_func_ngs.o bgc_func_hdf5.o mvrandist.o CXX = h5c++ CXXFLAGS = -Wall -O2 LIBS = -lgsl -lgslcblas LDFLAGS = -L/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/lib CPPFLAGS = -I/share/Apps/lusoft/opt/spack/linux-centos8-haswell/gcc-8.3.1/gsl/2.5-ixuujea/include EXEC = bgc all : $(EXEC) $(EXEC): $(OBJ) $(CXX) $(CXXFLAGS) $(CPPFLAGS) -o bgc $(OBJ) $(LIBS) $(LDFLAGS) %.o : %.C $(CXX) -c $(CXXFLAGS) $(CPPFLAGS) $< -o $@ %.o : %.c @$(CXX) -c $(CXXFLAGS) $(CPPFLAGS) $< -o $@ clean: rm -rf $(OBJ) $(EXEC) </pre> * Add an @ before a command to stop it from being printed --- # Directives * Make directives are similar to the C preprocessor directives * E.g. include, define, conditionals * Include directive * Read the contents of other Makefiles before proceeding within the current one * Often used to read * Top level and common definitions when there are multiple makefiles * Conditional directive * Make supports `if .. else .. endif` conditional --- # Command line options * `-f <filename>`: Specify the name of the file to be used as the makefile * default is GNUmakefile, makefile and Makefile (in that order) * `-s`: turn on silent mode * same as adding @ before all commands * `j num`: build target in parallel using `num` threads/commands * we have only 2 licenses for Intel compiler. * `num > 2` will not increase your overall compile time * `-i`: ignore all errors * `-k`: continue as much as possible after an error --- # Example Makefile with conditional if <pre class="tab wrap"> [alp514.sol](1149): cat /home/alp514/Workshop/sum2017/saxpy/solution/Makefile_f90 ifeq ($(COMP),gnu) CC = gcc FC = gfortran CFLAGS = OFLAGS = -fopenmp BIN = saxpyf saxpyf_omp else CC = pgcc FC = pgf90 CFLAGS = OFLAGS = -mp AFLAGS = -acc -Minfo=accel -ta=tesla:cc60 -Mcuda=kepler+ BIN = saxpyf saxpyf_omp saxpyf_acc saxpyf_cuda endif all: $(BIN) saxpyf: $(FC) $(CFLAGS) -o saxpyf saxpy.f90 saxpyf_omp: $(FC) $(OFLAGS) -o saxpyf_omp saxpy_omp.f90 saxpyf_acc: $(FC) $(AFLAGS) -o saxpyf_acc saxpy_acc.f90 saxpyf_cuda: $(FC) $(CFLAGS) -o saxpyf_cuda saxpy.cuf clean: rm -rf $(BIN) *~ [alp514.sol](1156): make all -f Makefile_f90 COMP=gnu gfortran -o saxpyf saxpy.f90 gfortran -fopenmp -o saxpyf_omp saxpy_omp.f90 </pre> --- # Software Installation * Install from prepackaged binary * RPMs – need root privilege (in most cases) * install packages using yum, apt, zypper in your own container * Tarballs with interactive installation scripts * e.g. Anaconda Python Distribution * Easy to install, but application may not be optimized for the cpu <pre class="wrap"> Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA </pre> * Install from source * compile the source files with own choice of compilers, options and libraries * most flexible, but you need to choose the best/right compilers and options * Many packages use GNU build system (autoconf etc.) to produce shell scripts that handle the configuration and build * `configure && make && make install` * `cmake && make && make install` * Use SPACK to install packages including dependencies --- # Install from source * configure the package, choose compilers and options * with *autoconf* * pass options to the `configure` script, which will generate Makefiles accordingly * the `configure` script comes with a `--help` option which displays all options acceptable to `configure` * without _autoconf_ * if using `cmake`: pass options to the cmake command * else you need to edit the Makefile (or files that it includes) * `make`: compile the source files * `make install`: copy compiled files to desired location --- # Case Study: LAPACK * No _autoconf_ * Installation steps * Download and extract source code * Copy _make.inc.example_ as _make.inc_, edit as needed * run make <script id="asciicast-mi0DBVFKzkq5YBPe5WB9ecwhH" src="https://asciinema.org/a/mi0DBVFKzkq5YBPe5WB9ecwhH.js" async data-rows=20></script> [View online](https://asciinema.org/a/mi0DBVFKzkq5YBPe5WB9ecwhH?autoplay=1&speed=2&size=8) --- # Case Study: FFTW * Uses _autoconf_ * Installation steps * Download and extract source code * run configure script (use --prefix to specify install location) * run make, followed by make install <script id="asciicast-RIdl1aGDbPLiSv3WCIvQw5tDW" src="https://asciinema.org/a/RIdl1aGDbPLiSv3WCIvQw5tDW.js" async data-rows=20></script> [View online](https://asciinema.org/a/RIdl1aGDbPLiSv3WCIvQw5tDW?autoplay=1&speed=2&size=8) --- # Using Autoconf * Commonly used `./configure` options * _--help_ : Print the help menu listing all available options * _--prefix=_: Specify installation location * default install location is /usr/local that requires admin right for `make install` to work * _--with-pic_: generates position independent code, same as adding -fPIC compile flag * _--enable-shared/static_: create shared/static libraries * either shared or static is enabled by default and you need to specify the other if you need those libraries * _--with-package_: if the application depends on _package_, then you may need to specify the path to install location of <package>. * required since we use non standard installation location * actual option may vary * sometime this option might not work and you may need to explicitly specify location of lib and include directories * _--with-package-libdir_ OR _--with-package-includedir_ * e.g. --with-blas=/home/alp514/Workshop/Make/lapack-3.9.0 --- # Case Study: GROMACS * Uses _CMAKE_ * Installation steps * Download and extract source code * create build directory and run cmake * run make, followed by make install <script id="asciicast-Zzgimy8rvfcrdwgai9ul3cnMO" src="https://asciinema.org/a/Zzgimy8rvfcrdwgai9ul3cnMO.js" async data-rows=20></script> [View online](https://asciinema.org/a/Zzgimy8rvfcrdwgai9ul3cnMO?autoplay=1&speed=2&size=8) --- # Using CMAKE * CMAKE requires building in a separate directory i.e. not the directory where source files or CMakeLists.txt is present. * Autoconf can be run from the same directory where configure script is present. It's good practice to use a separate build directory but this doesn't work for some applications. * Usage: `cmake <absolute or relative path to directory containing CMakeLists.txt>` * Example (for gromacs example above): `cmake /home/alp514/Workshop/Make/gromacs-2020.4` * CMAKE configuration options (_-D variable=value_) vary by application. * GROMACS uses `GMX_MPI=ON or OFF` while LAMMPS uses `BUILD_MPI=yes or no` * Yes, you need to RTFM * Make sure that dependencies are in your path * set PATH, LD\_LIBRARY\_PATH, and LD\_INCLUDE\_PATH variables or load the appropriate modules * if dependencies are not found, you may need to explicitly add them as `cmake` options * `-D MKL_LIBRARIES` or `-D FFTW3_LIBRARY` --- # CMAKE variables and commands * `-DCMAKE_INSTALL_PREFIX`: Specify installation location * `-DCMAKE_language_COMPILER`: Specify compiler for _language=C,CXX,Fortran_. * Use default GNU compiler or those specified by CC,CXX and FC variables * `-D CMAKE_language_FLAGS`: Specify compiler flags for _language_ (C/CXX/Fortran) * Can use environment variables _CFLAGS/CXXFLAGS/FFLAGS_ * `cmake --build` and `cmake --install` to build and install instead of `make` and `make install` <script id="asciicast-FtIKii3WOifa7HoY487SidMTV" src="https://asciinema.org/a/FtIKii3WOifa7HoY487SidMTV.js" async data-rows=20></script> [View online](https://asciinema.org/a/FtIKii3WOifa7HoY487SidMTV?autoplay=1&speed=2&size=8) --- # Manually building packages * Which one to use - Make, Autoconf, or CMAKE? * This depends on the application. * Dependency Hell * You still need to build or install dependencies. * Some applications have a long list of dependencies that can consume an enormous amount of time installing. * Using a package manager can simplify the install process * Build from source * SPACK: Package manager of choice on Sol/Hawk * Easybuild * Install from binaries * Conda: Did you think conda is for Python or R packages only? * Nix * GUIX --- class: inverse, middle # Supercomputer PACKage manager --- # SPACK * package management tool designed to support multiple versions and configurations of software on a wide variety of platforms and environments. * designed for large supercomputing centers, * many users and application teams share common installations of software on clusters with exotic architectures, using libraries that do not have a standard ABI. * non-destructive * installing a new version does not break existing installations * many configurations can coexist on the same system * offers a simple spec syntax so that users can specify versions and configuration options concisely * simple for package authors * package files are written in pure Python, and specs allow package authors to maintain a single file for many different builds of the same package * content used from SPACK tutorial slides available at https://spack-tutorial.readthedocs.io/ --- # HPC Software Complexity ![:scale 90%](assets/img/spack-hpc-complexity.png) <span style="font-size:12px">from SPACK tutorial slides presented at SC20</span> --- # SPACK: a flexible package manager * How to install SPACK? ```bash git clone https://github.com/spack/spack source spack/share/spack/setup-env.sh ``` * How to install a package? ```bash spack install hdf5 ``` * What will be installed? ```bash spack spec hdf5 ``` ``` ## Input spec ## -------------------------------- ## hdf5 ## ## Concretized ## -------------------------------- ## hdf5@1.10.7%apple-clang@11.0.0+cxx~debug+fortran+hl~java~mpi+pic+shared~szip~threadsafe api=none arch=darwin-mojave-x86_64 ## ^zlib@1.2.11%apple-clang@11.0.0+optimize+pic+shared arch=darwin-mojave-x86_64 ``` --- # SPACK: syntax * spec syntax to describe customized DAG configurations ```bash spack spec gromacs unconstrained spack spec gromacs@2020.4 @ custom version spack spec gromacs@2020.4 %intel@20.0.3 % custom compiler spack spec gromacs@2020.4 %intel@20.0.3 +cuda ~mpi +/- build option spack spec gromacs@2020.4 %intel@20.0.3 cppflags="-O3" set compiler flags spack spec gromacs@2020.4 %intel@20.0.3 target=haswell set target architecture spack spec gromacs@2020.4 %intel@20.0.3 target=haswell ^mpich@3.3.2 ^ dependency information ``` * very large list of packages supported ```bash spack list ==> 5373 packages. 3dtk libmetalink py-dm-tree r-genomeinfodbdata 3proxy libmicrohttpd py-dnaio r-genomicalignments abduco libmmtf-cpp py-docker r-genomicfeatures ``` * see list of packages installed ```bash [alp514.sol](1001): spack find target=x86_64 os=centos8 ==> 184 installed packages -- linux-centos8-x86_64 / gcc@8.3.1 ----------------------------- anaconda3@2019.10 font-util@1.3.2 libatomic-ops@7.6.6 libxext@1.3.3 openjdk@1.8.0_222-b10 perl-net-http@6.17 tcl@8.6.8 anaconda3@2020.07 fontconfig@2.13.1 libbsd@0.10.0 libxfixes@5.0.2 openssl@1.1.1h perl-test-needs@0.002005 tcl@8.6.10 at-spi2-atk@2.34.2 fontsproto@2.1.3 libedit@3.1-20191231 libxfont@1.5.2 pango@1.41.0 perl-try-tiny@0.28 texinfo@6.5 at-spi2-core@2.38.0 freetype@2.10.1 libevent@2.1.8 libxft@2.3.2 parallel@20200822 perl-uri@1.72 tk@8.6.8 atk@2.36.0 gawk@5.0.1 libffi@3.3 libxi@1.7.6 patchelf@0.10 perl-www-robotrules@6.02 tk@8.6.8 ``` --- # SPACK : Installation and Setup <script id="asciicast-NLNIoQnu8gvxDt1206gQoGs4D" src="https://asciinema.org/a/NLNIoQnu8gvxDt1206gQoGs4D.js" async data-speed=3 data-rows=25></script> [View online](https://asciinema.org/a/NLNIoQnu8gvxDt1206gQoGs4D?autoplay=1&speed=2&size=8) --- # SPACK: Installing packages <script id="asciicast-SBkLbuNYesRwcV0kklBn1LbgS" src="https://asciinema.org/a/SBkLbuNYesRwcV0kklBn1LbgS.js" async data-speed=2 data-rows=25></script> [View online](https://asciinema.org/a/SBkLbuNYesRwcV0kklBn1LbgS?autoplay=1&speed=2&size=8) --- # SPACK: Useful Commands * `spack compiler list`: show list of available compilers * `spack compiler find`: find compilers in your path and add new compilers * `spack compiler add <path>`: add compilers if present in `<path>` * `spack list`: show list of available packages * if <name> is provided, then show all available packages that match `name` * `spack find`: show list of installed packages * if <name> is provided, then show all installed packages that match `name` * Options: * `-x, --explicit`: show only specs that were installed explicitly * `-X, --implicit`: show only specs that were installed as dependencies * `-l, --long`: show dependency versions as well as hashes * `-p, --paths`: show paths to package install directories * `-d, --deps`: output dependencies along with found specs * `-h, --help`: show this help message and exit * `spack module tcl/lmod refresh`: create tcl/lmod modules. tcl modules are created by default during installation * Option: `--delete-tree`: delete entire module tree before creation --- # SPACK: Useful Commands * `spack install package@version constraints`: install package * if `@version` is omitted, then either the latest available or preferred package is installed * constraints can be * `%comp@ver`: install using `comp` compiler version `ver` * `+variant/~variant`: add/remove variant. Note there is no `-` since some packages have `-` in their name * `^depend@ver`: install `depend@ver`as a dependency e.g. mpich instead of openmpi * `spack uninstall package@version constraints`: uninstall package * Alternate: `spack uninstall /hash` delete package using it's hash * Options: * `--all`: uninstall all variants of `package@version` * `--dependents`: uninstall all packages that depend on `package@version` * SPACK will not allow you to delete a package if it is a dependency of another package --- # SPACK: Configuration * Copy configuration files from `/share/Apps/usr/etc/spack` to `~/.spack` if you want to match SOL's spack installation * `config.yaml`: main configuration file. * If you do not want to use SOL's configuration file, then create a config.yaml file that contains the following lines <pre class="tab"> config: build_stage: - $spack/var/spack/stage </pre> * by default, spack uses /tmp for temporary builds. Some applications are quite large and can fill the 10GB /tmp space and make the Sol head node unusable. * `compilers.yaml`: compiler specification (save this to `~/.spack/linux`) * `modules.yaml`: configuration file for creating modules * `packages.yaml`: set up default package configurations - paths, variants, providers * `repo.yaml`: local repository of package configuration (e.g. bgc) * `upstreams.yaml`: use `/share/Apps/lusoft` as an upstream install tree to avoid building duplicate packages --- # SPACK: Final Thoughts * SPACK has a lot more features. * environments to deploy a large set of software * use environments to build entire software stack optimized for ivybridge, haswell and skylake architectures * If you are a developer, you can use SPACK to distribute your software on HPC systems. --- class: inverse, middle # Singularity Containers --- # Containers? * Some applications are very hard to install: * Complex dependencies that is cumbersome even for SPACK. * Developers are too lazy to test on various architecture and distributions: * How many of you use an application that _works or is tested only on Ubuntu 14.04_? * Provide docker images since supporting an application takes time away from doing research. * Can we just use docker? * NO. Docker has two major issues with running on HPC systems. * Docker requires you to run as root that is not permitted on shared resources such as HPC systems. * Docker is not designed to run on HPC systems. It is not designed to run mpi applications across multiple nodes --- # What is Singularity? * open-source container software that allows users to pack an application and all of its dependencies into a single image (file) * Developed by Greg Kurtzer at Lawrence Livermore National Laboratory * "Container for HPC" * Native command line interface * Syntax: `singularity <command> <options> <arguments>` * Can use docker images as well as it's own .sif images. * Can run mpi applications provided the version of the mpi on the host and the container are the same. --- # Singularity on Sol and Hawk * Singularity is installed on all compute nodes of Sol and Hawk. * There is no module file for singularity * Singularity containers available for * Virtual Desktop Environment on Open OnDemand * RStudio Server on Open OnDemand * Cactus uses singularity to run docker image * Want to use your image: * You need to build on your local system and copy the .sif file to Sol --- # Singularity: pull docker images * pull docker images from hub.docker.com and convert to native .sif format <pre class="wrap"> [2021-03-11 21:22.53] ~/Workshop/singularity [apacheco@mira](1001): ls singularity.cast [2021-03-11 21:22.54] ~/Workshop/singularity [apacheco@mira](1002): singularity pull docker://godlovedc/lolcow INFO: Converting OCI blobs to SIF format INFO: Starting build... Getting image source signatures Copying blob 9fb6c798fa41 done Copying blob 3b61febd4aef done Copying blob 9d99b9777eb0 done Copying blob d010c8cf75d7 done Copying blob 7fac07fb303e done Copying blob 8e860504ff1e done Copying config 73d5b1025f done Writing manifest to image destination Storing signatures INFO: Creating SIF file... [2021-03-11 21:23.24] ~/Workshop/singularity [apacheco@mira](1003): ls lolcow_latest.sif singularity.cast </pre> --- # Singularity: run images * `singularity run image`: will run the default executing script * similar to `docker run images` <pre class="wrap"> [2021-03-11 21:23.27] ~/Workshop/singularity [apacheco@mira](1004): singularity run lolcow_latest.sif _______________________________________ / Don't go around saying the world owes \ | you a living. The world owes you | | nothing. It was here first. | | | \ -- Mark Twain / --------------------------------------- \ ^__^ \ (oo)\_______ (__)\ )\/\ ||----w | || || </pre> --- # Singularity: execute a command * `singularity exec image command`: execute command from within the container <pre class="wrap"> [2021-03-11 21:23.39] ~/Workshop/singularity [apacheco@mira](1006): singularity exec lolcow_latest.sif cat /etc/os-release NAME="Ubuntu" VERSION="16.04.3 LTS (Xenial Xerus)" ID=ubuntu ID_LIKE=debian PRETTY_NAME="Ubuntu 16.04.3 LTS" VERSION_ID="16.04" HOME_URL="http://www.ubuntu.com/" SUPPORT_URL="http://help.ubuntu.com/" BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/" VERSION_CODENAME=xenial UBUNTU_CODENAME=xenial </pre> --- # Singularity: run container as an executable * `./containername`: run the conatiner as an executable, * executes the default runscript * executes ENTRYPOINT CMD for docker images <pre class="wrap"> [2021-03-11 21:23.35] ~/Workshop/singularity [apacheco@mira](1005): ./lolcow_latest.sif _________________________________ < So you're back... about time... > --------------------------------- \ ^__^ \ (oo)\_______ (__)\ )\/\ ||----w | || || </pre> --- # Singularity: modify existing images * Singularity can build a sandboxed image so that you can install new packages or modify installed packages * You need admin right for this and should be done on a system where you have admin rights * No, you cannot get admin rights on Sol/Hawk. * You can install singularity natively on linux <pre class="wrap"> [2021-03-11 21:23.50] ~/Workshop/singularity [apacheco@mira](1007): singularity exec lolcow_latest.sif which python [2021-03-11 21:24.41] ~/Workshop/singularity [apacheco@mira](1010): sudo singularity build -s lolcow lolcow_latest.sif INFO: Starting build... INFO: Creating sandbox directory... INFO: Build complete: lolcow [2021-03-11 21:24.52] ~/Workshop/singularity [apacheco@mira](1011): sudo singularity shell -w lolcow ... skip .. [2021-03-11 21:25.34] ~/Workshop/singularity [apacheco@mira](1012): sudo singularity build lolcow.sif lolcow INFO: Starting build... INFO: Creating SIF file... INFO: Build complete: lolcow.sif [2021-03-11 21:26.05] ~/Workshop/singularity [apacheco@mira](1015): singularity exec lolcow.sif which python /usr/bin/python </pre> --- # Singularity: pull, modify and run <script id="asciicast-zbtQSoIeSF9RsTspXGwrpqEfW" src="https://asciinema.org/a/zbtQSoIeSF9RsTspXGwrpqEfW.js" async data-speed=3 data-rows=25></script> [View online](https://asciinema.org/a/zbtQSoIeSF9RsTspXGwrpqEfW?autoplay=1&speed=2&size=8) --- # Singularity: building you own images * The preferred method to build singularity images is by creating a definition file (similar to Dockerfile for docker images) * The method on the previous slide (pull image, create sandbox, install packages, create final image) is * tedious to reproduce * cannot set environment and other features that improve usability * A Singularity Definition file is divided into two parts * Header: describes the core operating system to build within the container. * configure the base operating system features needed. * specify, the Linux distribution, the specific version, and the packages that must be part of the core install * Sections: rest of the definition is comprised of sections * Each section is defined by a `%` character followed by the name of the particular section * sections are optional, and a def file may contain more than one instance of a given section --- # Example definition file <pre class="wrap"> Bootstrap: docker From: centos:8 %help Python 3.8 and R 4.0.4 in CentOS 8 %labels Author: Alex Pacheco Contact: alp514@lehigh.edu %runscript exec python3 "$@" %apprun python exec python3 "$@" %apprun R exec R "$@" %post yum update -y yum install -y epel-release yum --enablerepo epel install -y python38 python38-pip R-core </pre> --- # Bootstrap from docker <script id="asciicast-2ElkQPmGar1LgfjF0T5FjmQAA" src="https://asciinema.org/a/2ElkQPmGar1LgfjF0T5FjmQAA.js" async data-speed=2></script> [View online](https://asciinema.org/a/3mt7pnRPC1oRePqN9kOdNioip?autoplay=1&speed=2&size=8) --- # Bootstrap from local image <script id="asciicast-3mt7pnRPC1oRePqN9kOdNioip" src="https://asciinema.org/a/3mt7pnRPC1oRePqN9kOdNioip.js" async data-speed=2></script> [View online](https://asciinema.org/a/3mt7pnRPC1oRePqN9kOdNioip?autoplay=1&speed=2&size=8) --- # Best Practices * Bootstrap from trusted sources * preferably use base image from docker hub provided by OS vendor. * avoid using an image from some random source. * if you need to use a random source, review the dockerfile, definition file etc first. * Try to reuse existing images * See my rstudio images. * build base image with minimal packages -> * image with dependencies for installing a set of basic R packages -> * image with R packages for bioinformatics or geospatial * If possible, build docker images, upload to docker hub and bootstrap docker images * docker builds images in layers and it is easier to build a singularity image by downloading various layers. --- class: inverse, middle # Questions? ## Would you be interested in a deeper dive on each of the three topics in the summer?